1
|
Ferini G, Pergolizzi S. A Ten-year-long Update on Radiation Proctitis Among Prostate Cancer Patients Treated With Curative External Beam Radiotherapy. In Vivo 2021; 35:1379-1391. [PMID: 33910815 DOI: 10.21873/invivo.12390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
This comprehensive synopsis summarizes the most relevant information obtained from a systematic analysis of studies of the last decade on radiation proctitis, one of the most feared radioinduced side effects among prostate cancer patients treated with curative external beam radiotherapy. The present review provides a useful support to radiation oncologists for limiting the onset or improving the treatment of radiation proctitis. This work shows that the past decade was a harbinger of significant new evidence in technological advances and technical tricks to avoid radiation proctitis, in addition to dosimetric perspectives and goals, understanding of pathogenesis, diagnostic work-up and treatment. We believe that a well-rounded knowledge of such an issue is fundamental for its appropriate management.
Collapse
Affiliation(s)
| | - Stefano Pergolizzi
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Zhao H, Sarkar V, Wang B, Rassiah‐Szegedi P, Szegedi M, Jessica Huang Y, Huang L, Tward J, Salter B. Calculation of delivered composite dose from Calypso tracking data for prostate cancer: And subsequent evaluation of reasonable treatment interruption tolerance limits. J Appl Clin Med Phys 2019; 20:105-113. [PMID: 31355998 PMCID: PMC6698766 DOI: 10.1002/acm2.12684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 07/09/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE In this study we calculate composite dose delivered to the prostate by using the Calypso tracking -data- stream acquired during patient treatment in our clinic. We evaluate the composite distributions under multiple simulated Calypso tolerance level schemes and then recommend a tolerance level. MATERIALS AND METHODS Seven Calypso-localized prostate cancer patients treated in our clinic were selected for retrospective analysis. Two different IMRT treatment plans, with prostate PTV margins of 5 and 3 mm respectively, were computed for each patient. A delivered composite dose distribution was computed from Calypso tracking data for each plan. Additionally, we explored the dosimetric implications for "worst case" scenarios by assuming that the prostate position was located at one of the eight extreme corners of a 3 or 5 mm "box." To characterize plan quality under each of the studied scenarios, we recorded the maximum, mean, and minimum doses and volumetric coverage for prostate, PTV, bladder, and rectum. RESULTS AND DISCUSSIONS Calculated composite dose distributions were very similar to the original plan for all patients. The difference in maximum, mean, and minimum doses as well as volumetric coverage for the prostate, PTV, bladder, and rectum were all < 4.0% of prescription dose. Even for worst scenario cases, the results show acceptable isodose distribution, with the exception for the combination of a 3 mm PTV margin with a 5 mm position tolerance scheme. CONCLUSIONS Calculated composite dose distributions show that the vast majority of dosimetric metrics agreed well with the planned dose (within 2%). With significant/detrimental deviations from the planned dose only occurring with the combination of a 3 mm PTV margin and 5 mm position tolerance, the 3 mm position tolerance strategy appears reasonable, confirming that further reducing prostate PTV margins to 3 mm is possible when using Calypso with a position tolerance of 3 mm.
Collapse
Affiliation(s)
- Hui Zhao
- University of UtahSalt Lake CityUTUSA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
A M, N R, M M, B NM, H OT. Comparison of Radiobiological Models for Radiation Therapy Plans of Prostate Cancer: Three-dimensional Conformal versus Intensity Modulated Radiation Therapy. J Biomed Phys Eng 2019; 9:267-278. [PMID: 31341872 PMCID: PMC6613163 DOI: 10.31661/jbpe.v9i3jun.655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023]
Abstract
Purpose: In the current study, using different radiobiological models, tumor control probability (TCP) and normal tissue complication probability (NTCP) of radiotherapy plans were calculated for three-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) of prostate cancer.
Methods and Materials: 10 prostate plans were randomly selected among patients undergoing radiation therapy of prostate cancer. For each patient, 3D-CRT and IMRT plans were designed to deliver, on average 76 Gy and 82 Gy to planning target volume, respectively. Using different radiobiological models including Poisson, equivalent uniform dose (EUD) and Lyman-Kutcher-Burman (LKB), TCP and NTCP were calculated for prostate and critical organs including bladder, rectum and femoral heads.
Results: IMRT plans provided significantly lower NTCP for bladder, rectum and femoral heads using LKB and EUD models (p-value <0.05). The EUD-calculated TCP for prostate cancer revealed no considerable improvement for IMRT plans relative to 3D-CRT plans. However, the TCPs calculated by Poisson model were dependent on α/β, and higher TCP for IMRT relative to 3D-CRT was seen for α/β higher than 5.
Conclusion: It can be concluded that IMRT plans were superior to 3D-CRT plans in terms of estimated NTCP for studied critical organs. On the other hand, different mathematical models provided different quantitative outcome for TCP of prostate cancer plans. More clinical studies are suggested to confirm the accuracy of studied radiobiological models.
Collapse
Affiliation(s)
- Mesbahi A
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
- Radiation Oncology Department, Imam Hospital, Tabriz, Iran
| | - Rasouli N
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasiri Motlagh B
- Radiation Oncology Department, Imam Hospital, Tabriz, Iran
- Radiation Oncology Department, Tabriz International Hospital, Tabriz, Iran
| | - Ozan Tekin H
- Vocational School of Health Services, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
4
|
Utsunomiya S, Yamamoto J, Tanabe S, Oishi M, Satsuma A, Kaidu M, Abe E, Ohta A, Kushima N, Aoyama H. Complementary Relation Between the Improvement of Dose Delivery Technique and PTV Margin Reduction in Dose-Escalated Radiation Therapy for Prostate Cancer. Pract Radiat Oncol 2019; 9:172-178. [PMID: 30772440 DOI: 10.1016/j.prro.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/07/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study is to demonstrate quantitatively the complementary relationship between the introduction of intensity modulated radiation therapy (IMRT) and planning target volume (PTV) margin reduction with an image guided technique in reducing the risk of rectal toxicity in dose-escalating prostate radiation therapy. METHODS AND MATERIALS Three-dimensional conformal radiation therapy (CRT) and IMRT plans were generated for 10 patients with prostate cancer based on 2 PTV margin protocols (10/8 mm and 6/5 mm) and 2 dose prescriptions (70 Gy and 78 Gy). The normal tissue complication probability (NTCP) for each of the 8 scenarios was calculated using the Lyman-Kutcher-Burman model to estimate the risk of rectal and bladder late toxicity. The conformity and homogeneity indices of PTVs were calculated for each plan. RESULTS The IMRT plans showed superiority in conformity and inferiority in homogeneity over 3-dimensional CRT plans. The rectal NTCPs were increased 3.5 to 4.1 times when the prescribed total dose was changed from 70 Gy to 78 Gy and the dose delivery and the image guided radiation therapy techniques remained unchanged. PTV margin reduction was shown to reduce the value of rectal NTCP significantly. Overall, implementing the IMRT technique alone could reduce the NTCP values only by 2.1% to 7.3% from those of 3-dimensional CRT. The introduction of both IMRT and PTV margin reduction was found to be necessary for rectal NTCP to remain <5% in the dose escalation from 70 to 78 Gy. CONCLUSIONS The complementary relationship between the introduction of IMRT and PTV margin reduction was proven. We found that both approaches need to be implemented to safely deliver a curative dose in dose-escalating prostate radiation therapy.
Collapse
Affiliation(s)
- Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan.
| | - Jun Yamamoto
- School of Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Mayu Oishi
- School of Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Aruha Satsuma
- School of Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Eisuke Abe
- Department of Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Hidefumi Aoyama
- Department of Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
5
|
A dosimetric phantom study of thoracic radiotherapy based on three-dimensional modeling of mediastinal lymph nodes. Oncol Lett 2018; 15:5634-5642. [PMID: 29556300 PMCID: PMC5844048 DOI: 10.3892/ol.2018.8084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/16/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring.
Collapse
|
6
|
Coloigner J, Fargeas A, Kachenoura A, Wang L, Drean G, Lafond C, Senhadji L, de Crevoisier R, Acosta O, Albera L. A Novel Classification Method for Prediction of Rectal Bleeding in Prostate Cancer Radiotherapy Based on a Semi-Nonnegative ICA of 3D Planned Dose Distributions. IEEE J Biomed Health Inform 2015; 19:1168-77. [DOI: 10.1109/jbhi.2014.2328315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Hirashima H, Umezu Y, Fukunaga J, Hirose T, Nagata H, Mohri I, Nakamura K, Hirata H. [Effect of prostate matching on dose distribution by on board imager kV-CBCT image]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2015; 71:222-229. [PMID: 25797665 DOI: 10.6009/jjrt.2015_jsrt_71.3.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the effect of prostate matching on dose distribution using kilovolt cone beam computed tomography (kV-CBCT) with image guided radiation therapy for prostate cancer. MATERIALS AND METHOD Sixteen prostate cancer patients were treated with intensity modulated radiation therapy to 76 Gy at 2 Gy per fraction in 38 fractions. Daily target localization was performed using "bone matching" and "prostate matching" based on planning CT and kV-CBCT. Prostate dose coverage was assessed by the proportion of the CTV fully encompassed by 95%, 98% isodose lines, and mean dose lines. As for rectal and bladder, dose coverage was assessed by volumes which received 40 Gy, 60 Gy, 70 Gy, 75 Gy and mean dose at treatment. And we calculated the tumor control probability (TCP) and normal tissue complication probability (NTCP), accordingly. They were compared to the bone and prostate matching image. RESULT Our study found an improvement in dose usage in CTV and bladder which enabled us to compare the bone matching image and the prostate matching image. However, it did not improve dose usage in the rectal. Then we chose patients who were a large shift from bone matching image to prostate matching image. As a result, rectal dose and NTCP were reduced. DISCUSSION Prostate matching is useful and safe when compared to bone matching because of improving CTV dose usage and reducing dose rectal and bladder.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Maund IF, Benson RJ, Fairfoul J, Cook J, Huddart R, Poynter A. Image-guided radiotherapy of the prostate using daily CBCT: the feasibility and likely benefit of implementing a margin reduction. Br J Radiol 2014; 87:20140459. [PMID: 25354015 DOI: 10.1259/bjr.20140459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate whether planning target volume (PTV) margins may be safely reduced in radiotherapy of localized prostate cancer incorporating daily online tube potential-cone beam CT (CBCT) image guidance and the anticipated benefit in predicted rectal toxicity. METHODS The prostate-only clinical target volume (CTV2) and rectum were delineated on 1 pre-treatment CBCT each week in 18 randomly selected patients. By transposing these contours onto the original plan, dose-volume histograms (DVHs) for CTV2 and the rectum were each calculated and combined, for each patient, to produce a single mean DVH representative of the dose delivered over the treatment course. Plans were reoptimized using reduced CTV2 to PTV2 margins and the consequent radiobiological impact modelled by the tumour control probability (TCP) and normal tissue complication probability (NTCP) of the rectum. RESULTS All CBCT images were deemed of sufficient quality to identify the CTV and rectum. No loss of TCP was observed when plans using the standard 5-mm CTV2 to PTV2 margin of the centre were reoptimized with a 4- or 3-mm margin. Margin reduction was associated with a significant decrease in rectal NTCP (5-4 mm; p < 0.05 and 5-3 mm; p < 0.01). CONCLUSION Using daily online image guidance with CBCT, a reduction in CTV2 to PTV2 margins to 3 mm is achievable without compromising tumour control. The consequent sparing of surrounding normal tissues is associated with reduced anticipated rectal toxicity. ADVANCES IN KNOWLEDGE Margin reduction is feasible and potentially beneficial. Centres with image-guided radiotherapy capability should consider assessing whether margin reduction is possible within their institutes.
Collapse
Affiliation(s)
- I F Maund
- 1 Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
9
|
Calculation of planning margins for different verification techniques in radical prostate radiotherapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2014. [DOI: 10.1017/s1460396913000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractPurposeTo calculate and compare planning target volume (PTV) margins for an offline 3 mm tolerance, daily bony anatomy verification, tattoo alignment and online prostate marker matching with those currently used at our institution.MethodsSeventy patients had offline bony anatomy megavoltage verification. 23 different patients underwent fiducial marker matching using daily online kilovoltage verification. Systematic and random errors were measured in the right–left (RL), superior–inferior (SI) and anterior–posterior (AP) directions. Geometric uncertainties from literature were used to help calculate the margins.ResultsPTV margins (mm) were 7 RL, 12 SI and AP (3 mm tolerance offline bony), 6 RL, 11 SI and AP (daily online bony), 8 RL, 12 SI and AP (tattoo alignment) and 5 RL, 8 SI and 6 AP (online daily prostate marker correction).ConclusionsOur current margins for conformal radiotherapy patients are too small for phase 2 in the SI and AP directions. Implementing online daily bony anatomy matching would not reduce the PTV margin significantly. Online daily marker correction showed current PTV71 Gy margins as excessive by (mm) 5 RL, 2 SI and 4 anterior.
Collapse
|
10
|
Pearlstein KA, Chen RC. Comparing Dosimetric, Morbidity, Quality of Life, and Cancer Control Outcomes After 3D Conformal, Intensity-Modulated, and Proton Radiation Therapy for Prostate Cancer. Semin Radiat Oncol 2013; 23:182-90. [DOI: 10.1016/j.semradonc.2013.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Acosta O, Drean G, Ospina JD, Simon A, Haigron P, Lafond C, de Crevoisier R. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy. Phys Med Biol 2013; 58:2581-95. [PMID: 23528429 DOI: 10.1088/0031-9155/58/8/2581] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The majority of current models utilized for predicting toxicity in prostate cancer radiotherapy are based on dose-volume histograms. One of their main drawbacks is the lack of spatial accuracy, since they consider the organs as a whole volume and thus ignore the heterogeneous intra-organ radio-sensitivity. In this paper, we propose a dose-image-based framework to reveal the relationships between local dose and toxicity. In this approach, the three-dimensional (3D) planned dose distributions across a population are non-rigidly registered into a common coordinate system and compared at a voxel level, therefore enabling the identification of 3D anatomical patterns, which may be responsible for toxicity, at least to some extent. Additionally, different metrics were employed in order to assess the quality of the dose mapping. The value of this approach was demonstrated by prospectively analyzing rectal bleeding (≥Grade 1 at 2 years) according to the CTCAE v3.0 classification in a series of 105 patients receiving 80 Gy to the prostate by intensity modulated radiation therapy (IMRT). Within the patients presenting bleeding, a significant dose excess (6 Gy on average, p < 0.01) was found in a region of the anterior rectal wall. This region, close to the prostate (1 cm), represented less than 10% of the rectum. This promising voxel-wise approach allowed subregions to be defined within the organ that may be involved in toxicity and, as such, must be considered during the inverse IMRT planning step.
Collapse
|
12
|
Yin L, Wu H, Gong J, Geng JH, Jiang F, Shi AH, Yu R, Li YH, Han SK, Xu B, Zhu GY. Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison. World J Gastroenterol 2012; 18:5266-75. [PMID: 23066322 PMCID: PMC3468860 DOI: 10.3748/wjg.v18.i37.5266] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 06/27/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC).
METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported.
RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc.
CONCLUSION: Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.
Collapse
|
13
|
Acosta O, Dowling J, Cazoulat G, Simon A, Salvado O, de Crevoisier R, Haigron P. Atlas Based Segmentation and Mapping of Organs at Risk from Planning CT for the Development of Voxel-Wise Predictive Models of Toxicity in Prostate Radiotherapy. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-15989-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|