1
|
Choi DH, Kim JS, Lee R, Ahn SH, Ahn WS. Dosimetric verification of annual quality assurance for a linear accelerator using a transmission type detector. Sci Rep 2023; 13:17994. [PMID: 37865666 PMCID: PMC10590446 DOI: 10.1038/s41598-023-45114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
The purpose of our study is to establish an efficient quality assurance (QA) procedure using a transmission-type detector (IBA, Stealth chamber), a reference signal detector, as a field chamber. Relative dosimetry items, including monitor unit linearity, output constancy based on dose rate and field size, and output factor were measured and compared with results obtained from the Farmer-type chamber (IBA, Wellhofer, FC65-G). Moreover, output for each field size was measured to assess its applicability to small fields. Results using the Stealth chamber were in good agreement with the FC65-G within 1.0%, except for output constancy according to gantry angle, which had a 1.1% error rate for the Stealth chamber and 2.7% for the FC65-G. Differences of up to - 6.26% output factor were observed for the Stealth chamber and up to - 0.56% for the CC-13 ionization chamber (IBA) in the 3 × 3 cm2 field. Our study confirmed the possibility of using Stealth chambers for relative dosimetry measurement in QA.
Collapse
Affiliation(s)
- Dong Hyeok Choi
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Rena Lee
- Department of Biomedical Engineering, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - So Hyun Ahn
- Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | - Woo Sang Ahn
- Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea.
| |
Collapse
|
2
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Hermida-López M, Sánchez-Artuñedo D, Rodríguez M, Brualla L. Monte Carlo simulation of conical collimators for stereotactic radiosurgery with a 6 MV flattening-filter-free photon beam. Med Phys 2021; 48:3160-3171. [PMID: 33715167 DOI: 10.1002/mp.14837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Conical collimators, or cones, are tertiary collimators that attach to a radiotherapy linac and are suited for the stereotactic radiosurgery treatment of small brain lesions. The small diameter of the most used cones makes difficult the acquisition of the dosimetry data needed for the commissioning of treatment planning systems. Although many publications report dosimetric data of conical collimators for stereotactic radiosurgery, most of the works use different setups, which complicates comparisons. In other cases, the cone output factors reported do not take into account the effect of the small cone diameter on the detector response. Finally, few data exist on the dosimetry of cones with flattening-filter-free (FFF) beams from modern linac models. This work aims at obtaining a dosimetric characterization of the conical collimators manufactured by Brainlab AG (Munich, Germany) in a 6 MV FFF beam from a TrueBeam STx linac (Varian Medical Systems). METHODS Percentage depth dose curves, lateral dose profiles and cone output factors were obtained using Monte Carlo simulations for the cones with diameters of 4, 5, 6, 7.5, 8, 10, 12.5, 15, 17.5, 20, 25, and 30 mm. The simulation of the linac head was carried out with the PRIMO Monte Carlo software, and the simulations of the cones and the water phantom were run with the general-purpose Monte Carlo code PENELOPE. The Monte Carlo model was validated by comparing the simulation results with measurements performed for the cones of 4, 5, and 7.5 mm of diameter using a stereotactic field diode, a microDiamond detector and EBT3 radiochromic film. In addition, for those cones, simulations and measurements were done for comparison purposes, by reproducing the experimental setups from the available publications. RESULTS The experimental data acquired for the cones of 4, 5, and 7.5 mm validated the developed Monte Carlo model. The simulations accurately reproduced the experimental depths of maximum dose and the dose ratio at 20- and 10-cm depth (PDD20/10 ). A good agreement was obtained between simulated and experimental lateral dose profiles: The differences in the full-width at half-maximum were smaller than 0.2 mm, and the differences in the penumbra 80%-20% were smaller than 0.25 mm. The difference between the simulated and the average of the experimental output factors for the cones of 4, 5, and 7.5 mm of diameter was 0.0%, 0.0%, and 3.0%, respectively, well within the statistical uncertainty of the simulations (4.4% with coverage factor k = 2). It was also found that the simulated cone output factors agreed within 2% with the average of output factors reported in the literature for a variety of setup conditions, detectors, beam qualities, and cone manufacturers. CONCLUSION A Monte Carlo model of cones for stereotactic radiosurgery has been developed and validated. The cone dosimetry dataset obtained in this work, consisting of percentage depth doses, lateral dose profiles and output factors, is useful to benchmark data acquired for the commissioning of cone-based radiosurgery treatment planning systems.
Collapse
Affiliation(s)
- Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - David Sánchez-Artuñedo
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Miguel Rodríguez
- Centro Médico Paitilla, Calle 53 y ave. Balboa, Panama City, Panama.,Instituto de Investigaciones Científicas y de Alta Tecnología, INDICASAT-AIP, City of Knowledge, Building 219, Panama City, Panama
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen, 45147, Germany.,West German Cancer Centre (WTZ), Hufelandstr. 55, Essen, 45147, Germany.,Faculty of Medicine, University of Duisburg-Essen, Hufelandstr. 55, Essen, 45147, Germany
| |
Collapse
|
4
|
Lam S, Bradley D, Khandaker M. Small-field radiotherapy photon beam output evaluation: Detectors reviewed. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Groppo DP, Saraiva CW, Caldas LV. Determination of the penumbra width of Elekta SRS cone collimator for 6 MV FF and 6 MV FFF energies using gradient-based edge detection. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zhang M, Fan Q, Lei Y, Thapa B, Padula G. Assessment of an Elekta Versa HD linear accelerator for stereotactic radiosurgery with circular cone collimators. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:71-82. [PMID: 31904001 DOI: 10.3233/xst-190580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Versa HD linear accelerators (linacs) are used for stereotactic radiosurgery treatment. However, the mechanical accuracy of such systems remains a concern. OBJECTIVE The purpose of this study was to evaluate the accuracy of an Elekta Versa HD linac. METHODS We performed measurements with a ball bearing phantom to calculate the rotational isocenter radii of the linac's gantry, collimator, and table, and determine the relative locations of those isocenters. We evaluated the accuracy of the cone-beam computed tomography (CBCT) guidance with a film-embedding head phantom and circular cone-collimated radiation beams. We also performed dosimetric simulations to study the effects of the linac mechanical uncertainties on non-coplanar cone arc delivery. RESULTS The mechanical uncertainty of the linac gantry rotation was 0.78 mm in radius, whereas that of the collimator and the table was <0.1 mm and 0.33 mm, respectively. The axes of rotation of the collimator and the table were coinciding with and 0.13 mm away from the gantry isocenter, respectively. Experiments with test plans demonstrated the limited dosimetric consequences on the circular arc delivery given the aforementioned mechanical uncertainties. End-to-end measurements determined that the uncertainty of the CBCT guidance was≤1 mm in each direction with respect to the reference CT image. CONCLUSIONS In arc delivery, the mechanical uncertainties associated with the gantry and the table do not require remarkable increases in geometric margins. If large enough, the residual setup errors following CBCT guidance will dominate the overall dosimetric consequence. Therefore, the Versa HD linac is a valid system for stereotactic radiosurgery using non-coplanar arc delivery.
Collapse
Affiliation(s)
- Mutian Zhang
- Radiation Therapy, Summa Health Cancer Institute, Akron, Ohio, USA
| | - Qiyong Fan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bishnu Thapa
- Radiation Therapy, Summa Health Cancer Institute, Akron, Ohio, USA
| | - Gilbert Padula
- Radiation Therapy, Summa Health Cancer Institute, Akron, Ohio, USA
| |
Collapse
|
7
|
Borzov E, Nevelsky A, Bar-Deroma R, Orion I. Dosimetric characterization of Elekta stereotactic cones. J Appl Clin Med Phys 2017; 19:194-203. [PMID: 29266744 PMCID: PMC5768017 DOI: 10.1002/acm2.12242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 11/14/2022] Open
Abstract
Purpose Dosimetry of small fields defined by stereotactic cones remains a challenging task. In this work, we report the results of commissioning measurements for the new Elekta stereotactic conical collimator system attached to the Elekta VersaHD linac and present the comparison between the measured and Monte Carlo (MC) calculated data for the 6 MV FFF beam. In addition, relative output factor (ROF) dependence on the stereotactic cone aperture variation was studied and penumbra comparison for small MLC‐based and cone‐based fields was performed. Methods Cones with nominal diameters of 15 mm, 12.5 mm, 10 mm, 7.5 mm, and 5 mm were employed in our study. Percentage depth dose (PDD), off‐axis ratios (OAR), and ROF were measured using a stereotactic field diode (SFD). BEAMnrc code was used for MC simulations. Results MC calculated and measured PDDs for all cones agreed within 1%/0.5 mm, and OAR profiles agreed within 1%/0.5 mm. ROF obtained from the measurements and MC calculations agreed within 2% for all cone sizes. Small‐field correction factors for the SFD detector Kfield,3 × 3(SFD) were derived using MC calculations as a baseline and were found to be 0.982, 0.992, 0.997, 1.015, and 1.017 for the 5, 7.5, 10, 12.5, and 15‐mm cones respectively. The difference in ROF was about 10%, 6%, 3.5%, 3%, 2.5%, and 2% for ±0.3 mm variations in 5, 7.5, 10, 12.5, and 15‐mm cone aperture respectively. In case of single static field, cone‐based collimation produced a sharper penumbra compared to the MLC‐based. Conclusions Accurate MC simulation can be an effective tool for verification of dosimetric measurements of small fields. Due to the very high sensitivity of output factors on the cone diameter, manufacture‐related variations in cone size may lead to considerable variations in dosimetric characteristics of stereotactic cones.
Collapse
Affiliation(s)
- Egor Borzov
- Department of Radiotherapy, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Alexander Nevelsky
- Department of Radiotherapy, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Raquel Bar-Deroma
- Department of Radiotherapy, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Itzhak Orion
- Department of Nuclear Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|