1
|
Burton W, Myers C, Stefanovic M, Shelburne K, Rullkoetter P. Fully automatic tracking of native knee kinematics from stereo-radiography with digitally reconstructed radiographs. J Biomech 2024; 166:112066. [PMID: 38574563 DOI: 10.1016/j.jbiomech.2024.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Precise measurement of joint-level motion from stereo-radiography facilitates understanding of human movement. Conventional procedures for kinematic tracking require significant manual effort and are time intensive. The current work introduces a method for fully automatic tracking of native knee kinematics from stereo-radiography sequences. The framework consists of three computational steps. First, biplanar radiograph frames are annotated with segmentation maps and key points using a convolutional neural network. Next, initial bone pose estimates are acquired by solving a polynomial optimization problem constructed from annotated key points and anatomic landmarks from digitized models. A semidefinite relaxation is formulated to realize the global minimum of the non-convex problem. Pose estimates are then refined by registering computed tomography-based digitally reconstructed radiographs to masked radiographs. A novel rendering method is also introduced which enables generating digitally reconstructed radiographs from computed tomography scans with inconsistent slice widths. The automatic tracking framework was evaluated with stereo-radiography trials manually tracked with model-image registration, and with frames which capture a synthetic leg phantom. The tracking method produced pose estimates which were consistently similar to manually tracked values; and demonstrated pose errors below 1.0 degree or millimeter for all femur and tibia degrees of freedom in phantom trials. Results indicate the described framework may benefit orthopaedics and biomechanics applications through acceleration of kinematic tracking.
Collapse
Affiliation(s)
- William Burton
- Center for Orthopaedic Biomechanics, University of Denver, 2155 E Wesley Ave, Denver, 80208, CO, USA.
| | - Casey Myers
- Center for Orthopaedic Biomechanics, University of Denver, 2155 E Wesley Ave, Denver, 80208, CO, USA.
| | - Margareta Stefanovic
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Ave, Denver, 80208, CO, USA.
| | - Kevin Shelburne
- Center for Orthopaedic Biomechanics, University of Denver, 2155 E Wesley Ave, Denver, 80208, CO, USA.
| | - Paul Rullkoetter
- Center for Orthopaedic Biomechanics, University of Denver, 2155 E Wesley Ave, Denver, 80208, CO, USA.
| |
Collapse
|
2
|
Lu HY, Lin CC, Shih KS, Lu TW, Kuo MY, Li SY, Hsu HC. Integration of statistical shape modeling and alternating interpolation-based model tracking technique for measuring knee kinematics in vivo using clinical interleaved bi-plane fluoroscopy. PeerJ 2023; 11:e15371. [PMID: 37334125 PMCID: PMC10276557 DOI: 10.7717/peerj.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background A 2D fluoroscopy/3D model-based registration with statistical shape modeling (SSM)-reconstructed subject-specific bone models will help reduce radiation exposure for 3D kinematic measurements of the knee using clinical alternating bi-plane fluoroscopy systems. The current study aimed to develop such an approach and evaluate in vivo its accuracy and identify the effects of the accuracy of SSM models on the kinematic measurements. Methods An alternating interpolation-based model tracking (AIMT) approach with SSM-reconstructed subject-specific bone models was used for measuring 3D knee kinematics from dynamic alternating bi-plane fluoroscopy images. A two-phase optimization scheme was used to reconstruct subject-specific knee models from a CT-based SSM database of 60 knees using one, two, or three pairs of fluoroscopy images. Using the CT-reconstructed model as a benchmark, the performance of the AIMT with SSM-reconstructed models in measuring bone and joint kinematics during dynamic activity was evaluated in terms of mean target registration errors (mmTRE) for registered bone poses and the mean absolute differences (MAD) for each motion component of the joint poses. Results The mmTRE of the femur and tibia for one image pair were significantly greater than those for two and three image pairs without significant differences between two and three image pairs. The MAD was 1.16 to 1.22° for rotations and 1.18 to 1.22 mm for translations using one image pair. The corresponding values for two and three image pairs were 0.75 to 0.89° and 0.75 to 0.79 mm; and 0.57 to 0.79° and 0.6 to 0.69 mm, respectively. The MAD values for one image pair were significantly greater than those for two and three image pairs without significant differences between two and three image pairs. Conclusions An AIMT approach with SSM-reconstructed models was developed, enabling the registration of interleaved fluoroscopy images and SSM-reconstructed models from more than one asynchronous fluoroscopy image pair. This new approach had sub-millimeter and sub-degree measurement accuracy when using more than one image pair, comparable to the accuracy of CT-based methods. This approach will be helpful for future kinematic measurements of the knee with reduced radiation exposure using 3D fluoroscopy with clinically alternating bi-plane fluoroscopy systems.
Collapse
Affiliation(s)
- Hsuan-Yu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Cheng-Chung Lin
- Department of Electrical Engineering, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C.
| | - Kao-Shang Shih
- Department of Orthopedics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Mei-Ying Kuo
- Department of Physical Therapy, China Medical University, Taichung, Taiwan, R.O.C.
| | - Song-Ying Li
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Horng-Chaung Hsu
- Department of Orthopaedic Surgery, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
3
|
D'Ambrosi R, Ursino C, Mariani I, Corona K, Dahmen J, Sciarretta FV, Valli F, Ursino N. No difference in return to amateur sports after medial and lateral unicompartmental knee arthroplasty in patients younger than 65 years. Knee Surg Sports Traumatol Arthrosc 2022; 30:1050-1056. [PMID: 33751156 DOI: 10.1007/s00167-021-06526-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE The aim of this study was to assess the return to amateur sports of patients under 65 years, following medial unicompartmental knee arthroplasty (mUKA) versus lateral unicompartmental knee arthroplasty (lUKA). It was hypothesized that patients younger than 65 years who underwent lateral or medial unicondylar knee replacement will result in similar rates to amateur sports, at a minimum follow-up of 2 years. METHOD Patients who underwent medial or lateral UKA participated in a 2-year follow-up program, where they were clinically evaluated for their return to amateur sports, using the University of California, Los Angeles (UCLA) activity scale and the High-Activity Arthroplasty Score (HAAS). Furthermore, subgroup analyses by gender and age were performed. Power analysis was performed to ensure sample size considering that lUKA is implanted ten times less frequently than its medial counterpart. RESULTS There were 85 patients who completed the entire minimum 2-year follow-up of which 73 belonged to the mUKA group and 12 to the lUKA group. No preoperative differences were found between the groups regarding the gender, the affected side, age, and mean follow-up. Both groups showed statistically significant improvement (p < 0.05) in their return to amateur sports in all parameters (UCLA and HAAS). No differences among the two groups were found at T0 and T1 (n.s.). All subgroups showed a statistically significant improvement (p < 0.05) with respect to the preoperative value, except for UCLA for lUKA with less than 60 years and HAAS for males in the lUKA group (n.s.). No differences were found among subgroups both at To and T1 (n.s.). CONCLUSION Both mUKA and lUKA procedures enabled all young and active patients a certain return to amateur sports 2 years after surgery, regardless of age and gender. UKA, medial or lateral, should always be considered for the treatment of isolated osteoarthritis in young and active patients with high functional demands. LEVEL OF EVIDENCE Cohort Study, Level of Evidence III. REGISTRATION Researchregistry6221 - Research Registry www.researchregistry.com .
Collapse
Affiliation(s)
| | - Chiara Ursino
- Clinica Ortopedica, IRCCS Policlinico San Martino, Genova, Italy
| | - Ilaria Mariani
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Katia Corona
- Dipartimento Di Medicina E Scienze Della Salute Vincenzo, Università Degli Studi del Molise, Campobasso, Tiberio, Italy
| | - Jari Dahmen
- Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam, The Netherlands.,Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc, IOC Research Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
4
|
Li P, Li C, Wang C, Kernkamp WA, Yang CH, Hu H, Tsai TY. In-vivo Tibiofemoral Kinematics of the Normal Knee During Closed and Open Kinetic Chain Exercises: A Comparative Study of Box Squat and Seated Knee Extension. Med Eng Phys 2022; 101:103766. [DOI: 10.1016/j.medengphy.2022.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
|
5
|
Burton WS, Myers CA, Jensen A, Hamilton L, Shelburne KB, Banks SA, Rullkoetter PJ. Automatic tracking of healthy joint kinematics from stereo-radiography sequences. Comput Biol Med 2021; 139:104945. [PMID: 34678483 DOI: 10.1016/j.compbiomed.2021.104945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
Kinematic tracking of healthy joints in radiography sequences is frequently performed by maximizing similarities between computed perspective projections of 3D computer models and corresponding objects' appearances in radiographic images. Significant human effort associated with manual tracking presents a major bottleneck in biomechanics research methods and limits the scale of target applications. The current work introduces a method for fully-automatic tracking of tibiofemoral and patellofemoral kinematics in stereo-radiography sequences for subjects performing dynamic activities. The proposed method involves the application of convolutional neural networks for annotating radiographs and a multi-stage optimization pipeline for estimating bone pose based on information provided by neural net predictions. Predicted kinematics are evaluated by comparing against manually-tracked trends across 20 distinct trials. Median absolute differences below 1.5 millimeters or degrees for 6 tibiofemoral and 3 patellofemoral degrees of freedom demonstrate the utility of our approach, which improves upon previous semi-automatic methods by enabling end-to-end automation. Implementation of a fully-automatic pipeline for kinematic tracking will benefit evaluation of human movement by enabling large-scale studies of healthy knee kinematics.
Collapse
Affiliation(s)
- William S Burton
- Center for Orthopaedic Biomechanics at the University of Denver, 2155 E. Wesley Ave., Denver, CO, 80208, USA.
| | - Casey A Myers
- Center for Orthopaedic Biomechanics at the University of Denver, 2155 E. Wesley Ave., Denver, CO, 80208, USA.
| | - Andrew Jensen
- Department of Mechanical and Aerospace Engineering at the University of Florida, 939 Center Dr., Gainesville, FL, 32611, USA.
| | - Landon Hamilton
- Center for Orthopaedic Biomechanics at the University of Denver, 2155 E. Wesley Ave., Denver, CO, 80208, USA.
| | - Kevin B Shelburne
- Center for Orthopaedic Biomechanics at the University of Denver, 2155 E. Wesley Ave., Denver, CO, 80208, USA.
| | - Scott A Banks
- Department of Mechanical and Aerospace Engineering at the University of Florida, 939 Center Dr., Gainesville, FL, 32611, USA.
| | - Paul J Rullkoetter
- Center for Orthopaedic Biomechanics at the University of Denver, 2155 E. Wesley Ave., Denver, CO, 80208, USA.
| |
Collapse
|
6
|
Lu HY, Shih KS, Lin CC, Lu TW, Li SY, Kuo HW, Hsu HC. Three-Dimensional Subject-Specific Knee Shape Reconstruction with Asynchronous Fluoroscopy Images Using Statistical Shape Modeling. Front Bioeng Biotechnol 2021; 9:736420. [PMID: 34746102 PMCID: PMC8564181 DOI: 10.3389/fbioe.2021.736420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background and objectives: Statistical shape modeling (SSM) based on computerized tomography (CT) datasets has enabled reasonably accurate reconstructions of subject-specific 3D bone morphology from one or two synchronous radiographs for clinical applications. Increasing the number of radiographic images may increase the reconstruction accuracy, but errors related to the temporal and spatial asynchronization of clinical alternating bi-plane fluoroscopy may also increase. The current study aimed to develop a new approach for subject-specific 3D knee shape reconstruction from multiple asynchronous fluoroscopy images from 2, 4, and 6 X-ray detector views using a CT-based SSM model; and to determine the optimum number of planar images for best accuracy via computer simulations and in vivo experiments. Methods: A CT-based SSM model of the knee was established from 60 training models in a healthy young Chinese male population. A new two-phase optimization approach for 3D subject-specific model reconstruction from multiple asynchronous clinical fluoroscopy images using the SSM was developed, and its performance was evaluated via computer simulation and in vivo experiments using one, two and three image pairs from an alternating bi-plane fluoroscope. Results: The computer simulation showed that subject-specific 3D shape reconstruction using three image pairs had the best accuracy with RMSE of 0.52 ± 0.09 and 0.63 ± 0.085 mm for the femur and tibia, respectively. The corresponding values for the in vivo study were 0.64 ± 0.084 and 0.69 ± 0.069 mm, respectively, which was significantly better than those using one image pair (0.81 ± 0.126 and 0.83 ± 0.108 mm). No significant differences existed between using two and three image pairs. Conclusion: A new two-phase optimization approach was developed for SSM-based 3D subject-specific knee model reconstructions using more than one asynchronous fluoroscopy image pair from widely available alternating bi-plane fluoroscopy systems in clinical settings. A CT-based SSM model of the knee was also developed for a healthy young Chinese male population. The new approach was found to have high mode reconstruction accuracy, and those for both two and three image pairs were much better than for a single image pair. Thus, two image pairs may be used when considering computational costs and radiation dosage. The new approach will be useful for generating patient-specific knee models for clinical applications using multiple asynchronous images from alternating bi-plane fluoroscopy widely available in clinical settings. The current SSM model will serve as a basis for further inclusion of training models with a wider range of sizes and morphological features for broader applications.
Collapse
Affiliation(s)
- Hsuan-Yu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Kao-Shang Shih
- Department of Orthopedics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,School of Medicine, Fu Jen Catholic University, Taipei, Taiwan
| | - Cheng-Chung Lin
- Department of Electrical Engineering, Fu Jen Catholic University, Taipei, Taiwan
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Song-Ying Li
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsin-Wen Kuo
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopaedic Surgery, China Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Jeon JW, Hong J. Comparison of screw-home mechanism in the unloaded living knee subjected to active and passive movements. J Back Musculoskelet Rehabil 2021; 34:589-595. [PMID: 33554884 DOI: 10.3233/bmr-200110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The screw-home mechanism (SHM) plays an important role in the stability of the knee. Accordingly, the analysis of tibial rotation patterns can be used to elucidate the effect of SHM-related factors. OBJECTIVE The purpose of this study was to compare the magnitude of the angle and the pattern of SHM between passive and active movements. METHODS We studied twenty healthy males, of which the angle of knee flexion-extension and tibial longitudinal rotation (TLR) during active and passive movements were measured using the inertial measurement unit. Student's t-tests were used to compare the magnitude of TLR. The waveform similarity was quantified using a coefficient of multiple correlation (CMC). RESULTS Significant differences were found in the TLR between the active and passive movements (p< 0.05). The knee flexion-extension waveform similarity was excellent (CMC = 0.956). However, the waveform similarity of TLR was weak (CMC = 0.629). CONCLUSION The SHM increased abruptly during the last 20∘ of the active (extension) movement compared with passive extension. The SHM occurred mainly owing to the geometry and shape of the articular surfaces of the knee joint. In addition, muscle contraction was considered to be an important factor in the articulation movement.
Collapse
|
8
|
Hung LW, Lu HY, Chang CH, Chen TY, Wang TM, Lu TW. Effects of Internal Fixation for Mid-Shaft Clavicle Fractures on Shoulder Kinematics During Humeral Elevations. Front Bioeng Biotechnol 2021; 9:710787. [PMID: 34368104 PMCID: PMC8339802 DOI: 10.3389/fbioe.2021.710787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mid-shaft clavicle fractures account for 35 to 44% of injuries to the shoulder girdle. There is increasing evidence to support surgical repair, but poor functional outcomes have been reported, and associated factors remain unclear. Methods The three-dimensional poses of the shoulder bones during arm elevations were measured in 15 patients treated for mid-shaft clavicle fractures by open reduction and internal fixation, and in 15 healthy controls. Results and Conclusion No significant between-side differences were found in the clavicle length after surgery (p > 0.05). The patients showed increased scapular protraction at lower elevation angles and reduced scapular retraction at higher elevation angles during frontal-plane elevations, with significantly reduced clavicle retraction (p < 0.05), with unaltered scapular rotation and tilt. The ranges of the observed changes were reduced to arm elevations at 60° and 90° in the scapular and sagittal planes. Similar changes were also found on the unaffected side, suggesting symmetrical bilateral compensation. The results suggest that shoulder kinematics in multi-plane arm elevations should be monitored for any signs of compromised bone motions following surgical treatment, and that rehabilitative training may be needed on both sides to improve the bilateral movement control of the shoulder complex.
Collapse
Affiliation(s)
- Li-Wei Hung
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsuan-Yu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Hsun Chang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsan-Yang Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Ming Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Chen CC, Lin CC, Hsieh HP, Fu YC, Chen YJ, Lu TW. In vivo three-dimensional mandibular kinematics and functional point trajectories during temporomandibular activities using 3d fluoroscopy. Dentomaxillofac Radiol 2021; 50:20190464. [PMID: 32783637 DOI: 10.1259/dmfr.20190464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To measure in vivo three-dimensional kinematics of the mandible and associated end-point trajectories and to quantify their relationships during temporomandibular joint activities using 3D fluoroscopy. METHODS A novel fluoroscopy-based 3D measurement method was used to measure motions of the mandible and the associated end points (i.e. incisors and lateral poles of both condyles) during open close, lateral gliding and protrusion-retraction movements in healthy young individuals. The contributions of each of the rotational and translational components of the mandible to the end-point trajectories were quantified through experiment-based computer simulations. RESULTS The mandibular rotation was found to account for 91% of the maximal mouth-opening-capacity and 73% of the maximal lateral incisor movement, while the condylar translation contributed to 99% of the anterior protrusion distance. Incisor trajectories were nearly vertical within the first 60% of the maximal opening during the open-close movement. CONCLUSIONS Similar condylar downward rotation paths but with bilaterally asymmetrical ranges were used to perform basic mandibular movements of different targeted TI trajectories in three dimensions, that is, open-close, lateral-gliding and protrusion-retraction. Mandibular rotations contributed to the majority of the principal displacement components of the incisor, that is, vertical during open-close and towards the working-side-during lateral-gliding, while mandibular translation contributed mainly to the forward movement of the incisor during protrusion-retraction. Owing to the anatomical constraints, the freedom of mandibular translation is limited and mainly in the anteroposterior direction, which is considered helpful for the control and stability of the TMJ during oral activities.
Collapse
Affiliation(s)
- Chien-Chih Chen
- School of Dentistry, National Taiwan University, Taipei, Taiwan.,i-Change Dental Clinic, Taipei, Taiwan.,Department of Dentistry, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chung Lin
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hong-Po Hsieh
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yang-Chieh Fu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yunn-Jy Chen
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Zorko M, Nemec B, Matjačić Z, Olenšek A, Tomazin K, Supej M. Wide Skis As a Potential Knee Injury Risk Factor in Alpine Skiing. Front Sports Act Living 2020; 2:7. [PMID: 33345002 PMCID: PMC7739600 DOI: 10.3389/fspor.2020.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Alpine skis with wider waist widths have recently become more popular. With such skis, the contact point of the ground reaction force during ski turns is displaced more medially from beneath the sole of the outer ski, which may present an increased risk of injury. The aim of this study was to investigate knee joint kinetics, kinematics, and lower limb muscle activation as a function of changes of the ski waist width in a laboratory setting. A custom skiing simulator was constructed to enable simulation of different ski waist widths in a quasi-static ski turn position. An optical system was used for capturing knee joint kinematics of the outer leg, whereas a force plate was used to determine the ground reaction force vector. The combination of both systems enabled values for external torques acting on the knee joint to be calculated, whereas electromyographic measurements enabled an analysis of knee flexor muscle activation. With respect to the outer ski, the knee joint external torques were independent of ski waist width, whereas knee joint external rotation and biceps femoris activation increased significantly with the increase of the ski waist width. Skier muscle and kinematics adaptation most probably took place to diminish the external knee joint torque changes when the waist width of the ski was increased. The laboratory results suggest that using skis with large waist widths on hard, frozen surfaces may change the load of knee joint surfaces. However, future research is needed to clarify if this may result in the increased risk of knee injury.
Collapse
Affiliation(s)
- Martin Zorko
- Clinical Institute of Occupational, Traffic and Sports Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Bojan Nemec
- Department for Automatics, Biocybernetics and Robotics, Jožef Štefan Institute, Ljubljana, Slovenia
| | - Zlatko Matjačić
- Research and Development Unit, University Rehabilitation Institute, Ljubljana, Slovenia
| | - Andrej Olenšek
- Research and Development Unit, University Rehabilitation Institute, Ljubljana, Slovenia
| | - Katja Tomazin
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Supej
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Thomeer L, Guan S, Gray H, Schache A, de Steiger R, Pandy M. Six-Degree-of-Freedom Tibiofemoral and Patellofemoral Joint Motion During Activities of Daily Living. Ann Biomed Eng 2020; 49:1183-1198. [PMID: 33094419 DOI: 10.1007/s10439-020-02646-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to measure the three-dimensional movements of the femur, tibia and patella in healthy young people during activities of daily living. A mobile biplane X-ray imaging system was used to obtain simultaneous measurements of six-degree-of-freedom (6-DOF) tibiofemoral and patellofemoral kinematics and femoral condylar motion in ten participants during standing, level walking, downhill walking, stair ascent, stair descent and open-chain (non-weightbearing) knee flexion. Seven of the eleven secondary motions at the knee-three translations at the tibiofemoral joint, three translations at the patellofemoral joint, and patellar flexion-were coupled to the tibiofemoral flexion angle (r2 ≥ 0.71). Tibial internal-external rotation, tibial abduction-adduction, patellar rotation, and patellar tilt were each weakly related to the tibiofemoral flexion angle (r2 ≤ 0.45). The displacements of the femoral condyles were also coupled to the tibiofemoral flexion angle (r2 ≥ 0.70), with the lateral condyle translating further on the tibial plateau than the medial condyle. The center of rotation of the tibiofemoral joint in the transverse plane was located on the medial side in all activities. These findings expand our understanding of the kinematic function of the healthy knee and may be relevant to a range of applications in biomechanics, including the design of prosthetic knee implants and the development of knee models for use in full-body simulations of movement.
Collapse
Affiliation(s)
- Lucas Thomeer
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shanyuanye Guan
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hans Gray
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony Schache
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Richard de Steiger
- Department of Surgery, Epworth Health Care, University of Melbourne, Richmond, VIC, 3010, Australia
| | - Marcus Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
12
|
Shih KS, Lin CC, Lu HL, Fu YC, Lin CK, Li SY, Lu TW. Patient-specific instrumentation improves functional kinematics of minimally-invasive total knee replacements as revealed by computerized 3D fluoroscopy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 188:105250. [PMID: 31838341 DOI: 10.1016/j.cmpb.2019.105250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 10/17/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Minimally-invasive total knee arthroplasty (MIS-TKA) has demonstrated very good short-term success, but its mid- to long-term results remain inconclusive. The success may be related to the tradeoff between a small incision and accurate positioning of the implant components. Patient-specific instrumentation (PSI) aims to improve the accuracy in restoring the knee axis and the clinical outcomes for MIS-TKA, but the results are yet to be confirmed by accurate assessment during functional activities. The purpose of the current study was to measure and compare the in vivo three-dimensional (3D) rigid-body and surface kinematics of MIS-TKA implanted with and without PSI during isolated knee active flexion/extension and sit-to-stand using state-of-the-art 3D model-based fluoroscopy technology. METHODS Ten patients treated for advanced medial knee osteoarthritis by MIS-TKA without PSI (non-PSI group) and nine with PSI (PSI group) participated in the current study. Each subject performed non-weight-bearing knee flexion/extension and sit-to-stand tasks while the motion of the prosthetic knee was under bi-plane fluoroscopy surveillance. The computer models of each of the knee prosthesis components were registered to the measured fluoroscopy images for each time frame via a novel validated 3D fluoroscopy method. Non-parametric 1-tailed Mann-Whitney tests were performed to detect the differences in the joint and surface kinematic variables every 10° of knee flexion between the non-PSI and PSI groups. The 1-tailed significance level was at α = 0.05. RESULTS The PSI group showed clear, coupled flexion/internal rotation during activities, while the non-PSI group remained roughly at an externally rotated position with slight internal rotations. The coupled rotation in the PSI group was accompanied by an anterior displacement of the medial contact and a posterior displacement of the lateral contact, which was different from the screw-home mechanism. Neither of the two groups showed the normal roll-back phenomenon, i.e., posterior translation of the femur relative to the tibia during knee flexion. CONCLUSIONS With the state-of-the-art 3D fluoroscopy method, differences in both the rigid-body and surface kinematics of the prosthetic knees between MIS-TKA with and without PSI were identified. Patients with PSI demonstrated significant positive effects on the reconstructed rigid-body kinematics of the knee, showing clearer coupled flexion/internal rotations - an important kinematic characteristic in healthy knees - than those without PSI during activities with or without weight-bearing. However, none of them showed normal contact patterns. The current findings will be helpful for surgical instrument design, as well as for surgical decision-making in MIS total knee arthroplasty.
Collapse
Affiliation(s)
- Kao-Shang Shih
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C.; Department of Orthopedics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Cheng-Chung Lin
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C
| | - Hsuan-Lun Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Yang-Chieh Fu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Cheng-Kai Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Song-Ying Li
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.; Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C..
| |
Collapse
|
13
|
Ellenberger L, Oberle F, Lorenzetti S, Frey WO, Snedeker JG, Spörri J. Dynamic knee valgus in competitive alpine skiers: Observation from youth to elite and influence of biological maturation. Scand J Med Sci Sports 2020; 30:1212-1220. [DOI: 10.1111/sms.13657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 03/10/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Lynn Ellenberger
- Sports Medical Research Group Department of Orthopaedics Balgrist University Hospital University of Zurich Zurich Switzerland
- University Center for Prevention and Sports Medicine Balgrist University Hospital University of Zurich Zurich Switzerland
| | - Felix Oberle
- Sports Medical Research Group Department of Orthopaedics Balgrist University Hospital University of Zurich Zurich Switzerland
- University Center for Prevention and Sports Medicine Balgrist University Hospital University of Zurich Zurich Switzerland
| | - Silvio Lorenzetti
- Swiss Federal Institute of Sport Magglingen (SFISM) Magglingen Switzerland
| | - Walter O. Frey
- University Center for Prevention and Sports Medicine Balgrist University Hospital University of Zurich Zurich Switzerland
| | - Jess G. Snedeker
- Biomechanics Laboratory Department of Orthopaedics Balgrist University Hospital University of Zurich Zurich Switzerland
- Institute for Biomechanics ETH Zurich Zurich Switzerland
| | - Jörg Spörri
- Sports Medical Research Group Department of Orthopaedics Balgrist University Hospital University of Zurich Zurich Switzerland
- University Center for Prevention and Sports Medicine Balgrist University Hospital University of Zurich Zurich Switzerland
| |
Collapse
|
14
|
Ding Z, Güdel M, Smith SHL, Ademefun RA, Bull AMJ. A Femoral Clamp to Reduce Soft Tissue Artifact: Accuracy and Reliability in Measuring Three-Dimensional Knee Kinematics During Gait. J Biomech Eng 2020; 142:044501. [PMID: 31596924 DOI: 10.1115/1.4045115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/08/2022]
Abstract
The accurate measurement of full six degrees-of-freedom (6DOFs) knee joint kinematics is prohibited by soft tissue artifact (STA), which remains the greatest source of error. The purpose of this study was to present and assess a new femoral clamp to reduce STA at the thigh. It was hypothesized that the device can preserve the natural knee joint kinematics pattern and outperform a conventional marker mounted rigid cluster during gait. Six healthy subjects were asked to walk barefoot on level ground with a cluster marker set (cluster gait) followed by a cluster-clamp-merged marker set (clamp gait) and their kinematics was measured using the cluster method in cluster gait and the cluster and clamp methods simultaneously in clamp gait. Two operators performed the gait measurement. A 6DOFs knee joint model was developed to enable comparison with the gold standard knee joint kinematics measured using a dual fluoroscopic imaging technique. One-dimensional (1D) paired t-tests were used to compare the knee joint kinematics waveforms between cluster gait and clamp gait. The accuracy was assessed in terms of the root-mean-square error (RMSE), coefficient of determination, and Bland-Altman plots. Interoperator reliability was assessed using the intraclass correlation coefficient (ICC). The result showed that the femoral clamp did not change the walking speed and knee joint kinematics waveforms. Additionally, clamp gait reduced the rotation and translation errors in the transverse plane and improved the interoperator reliability when compared to the rigid cluster method, suggesting a more accurate and reliable measurement of knee joint kinematics.
Collapse
Affiliation(s)
- Ziyun Ding
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Manuela Güdel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Samuel H L Smith
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Richard A Ademefun
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Galvin CR, Perriman DM, Lynch JT, Pickering MR, Newman P, Smith PN, Scarvell JM. Age has a minimal effect on knee kinematics: A cross-sectional 3D/2D image-registration study of kneeling. Knee 2019; 26:988-1002. [PMID: 31427245 DOI: 10.1016/j.knee.2019.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Kneeling is an activity of daily living which becomes difficult with knee pathology and increasing age. This study aimed to capture kneeling kinematics in six-degrees-of-freedom in healthy adults as a function of age. METHODS 67 healthy knee participants aged from 20 to 90 years were categorised into four 20-year age-groups. 3D knee kinematics were captured using 3D/2D image-registration of CT scan and fluoroscopy during kneeling. Kinematic variables of position, displacement and rate-of-change in six-degrees-of-freedom were compared between age-groups while controlling for University of California Los Angeles activity scale and the Assessment of Quality of Life physical score. RESULTS Over the entire kneeling cycle there were few differences between the age-groups. Results are reported as pairwise contrasts. At 110° flexion, 80+ knees were more varus than 20-39 and 40-69 (4.9° (95%CI: 0.6°, 9.1°) and 6.4° (2.1°, 10.7°), respectively). At 120° flexion, the 80+ age-group femur was 5.5 (0.0, 11.0) mm more anterior than 20-39. Between 120° to maximum flexion, 80+ knees rotated into valgus more than 20-39, 40-59 and 60-79 (5.5° (1.2°, 9.8°); 5.5° (1.1°, 9.8°); and 4.5° (0.9°, 7.5°), respectively). CONCLUSION This is the first study to report kneeling knee kinematics of ageing using 3D/2D image registration. We found that ageing does not change knee kinematics under 80 years, and there are minimal changes between 120° and maximum flexion between the younger and 80+ age-groups. Thus, difficulty kneeling should not be considered to be an inevitable consequence of ageing.
Collapse
Affiliation(s)
- Catherine R Galvin
- Research School of Electrical, Energy and Materials Engineering, Australian National University, Ian Ross Building 31, North Road, Acton, ACT, 2601; Faculty of Health, University of Canberra, Locked Bag 1, 2601, Australia; Trauma and Orthopaedic Research Unit, Canberra Hospital. Woden, ACT, 2606, Australia.
| | - Diana M Perriman
- The Australian National University, Acton, ACT, 2601, Australia; Faculty of Health, University of Canberra, Locked Bag 1, 2601, Australia; Trauma and Orthopaedic Research Unit, Canberra Hospital. Woden, ACT, 2606, Australia.
| | - Joseph T Lynch
- The Australian National University, Acton, ACT, 2601, Australia; Trauma and Orthopaedic Research Unit, Canberra Hospital. Woden, ACT, 2606, Australia.
| | - Mark R Pickering
- University of New South Wales Canberra at ADFA, PO Box 7916, Canberra BC, ACT 2610, Australia; Trauma and Orthopaedic Research Unit, Canberra Hospital. Woden, ACT, 2606, Australia.
| | - Phillip Newman
- Faculty of Health, University of Canberra, Locked Bag 1, 2601, Australia.
| | - Paul N Smith
- The Australian National University, Acton, ACT, 2601, Australia; Trauma and Orthopaedic Research Unit, Canberra Hospital. Woden, ACT, 2606, Australia.
| | - Jennie M Scarvell
- Faculty of Health, University of Canberra, Locked Bag 1, 2601, Australia; Trauma and Orthopaedic Research Unit, Canberra Hospital. Woden, ACT, 2606, Australia.
| |
Collapse
|
16
|
Lin CC, Zhang S, Hsu CY, Frahm J, Lu TW, Shih TF. Measuring three-dimensional tibiofemoral kinematics using dual-slice real-time magnetic resonance imaging. Med Phys 2019; 46:4588-4599. [PMID: 31408532 DOI: 10.1002/mp.13761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 07/20/2019] [Accepted: 08/07/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of this study is to propose and evaluate a slice-to-volume registration (SVR) method integrating an advanced dual-slice real-time magnetic resonance image (MRI) and three-dimensional (3D) MRI volume of the tibiofemoral joint for determining their 3D kinematics. METHODS The real-time and 3D MRI of the knee were collected from 12 healthy adults at 5 static flexion positions and during dynamic flexion/extension movement. The 3D positions and orientations of the femur and tibia were obtained by registering their volumetric models constructed from the 3D MRI to dual-slice real-time MRI using an optimization process. The proposed method was quantitatively evaluated for its performance in terms of the robustness and measurement accuracy, and compared to those of a single-slice SVR method. Its repeatability in measuring knee kinematics during flexion/extension movement was also determined. RESULTS In comparison to the single-slice SVR method, the dual-slice method was significantly superior, giving a successful registration rate > 95%, a bias less than 0.5 mm in translations and 0.6° in rotations and a precision <0.7 mm in translations and 0.9° in rotations for determining the 3D tibiofemoral poses. For repeatability of the dual-slice SVR in measuring tibiofemoral kinematics during dynamic flexion/extension, the means of the time-averaged standard deviations were <0.9° for joint angles and 0.5 mm for joint translations. CONCLUSION A dual-slice SVR method in conjunction with real-time MRI has been developed and evaluated for its performance in measuring 3D kinematics of the tibiofemoral joint in 12 young adults in terms of the accuracy, robustness, and repeatability. The proposed MRI-based 3D measurement method provides a noninvasive and ionizing radiation-free approach for 3D kinematic measurement of the tibiofemoral joint, which will be helpful for future academic and clinical applications.
Collapse
Affiliation(s)
- Cheng-Chung Lin
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Shuo Zhang
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institute für biophysikalische Chemie, Am Fassberg 11, 37070, Göttingen, Germany
| | - Chao-Yu Hsu
- Department of Radiology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, 10051, Taiwan
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institute für biophysikalische Chemie, Am Fassberg 11, 37070, Göttingen, Germany
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan.,Department of Orthopaedic Surgery, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ting-Fang Shih
- Department of Radiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, Taipei, 10051, Taiwan
| |
Collapse
|
17
|
Barzan M, Modenese L, Carty CP, Maine S, Stockton CA, Sancisi N, Lewis A, Grant J, Lloyd DG, Brito da Luz S. Development and validation of subject-specific pediatric multibody knee kinematic models with ligamentous constraints. J Biomech 2019; 93:194-203. [DOI: 10.1016/j.jbiomech.2019.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/16/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023]
|
18
|
Koh YG, Nam JH, Kang KT. Effect of geometric variations on tibiofemoral surface and post-cam design of normal knee kinematics restoration. J Exp Orthop 2018; 5:53. [PMID: 30578465 PMCID: PMC6303222 DOI: 10.1186/s40634-018-0167-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background Restoration of natural knee kinematics for a designed mechanism in knee implants is required to achieve full knee function in total knee arthroplasty (TKA). In different posterior-stabilized TKAs, there are wide variations in tibiofemoral surfaces and post-cam design. However, it is not known whether these design variations preserve natural knee kinematics. The purpose of this study was to determine the most appropriate tibiofemoral surface and post-cam designs to restore natural knee kinematics of the TKA. Methods A subject-specific finite element knee modal was used to evaluate tibiofemoral surface and post-cam design. Three different posts in convex, straight, and concave geometries were considered with a fixed circular cam design in this study. In addition, this post-cam design was applied to three different surface conformities for conforming, medial pivot, and subject anatomy mimetic tibiofemoral surfaces. We evaluated the femoral rollback, internal-external rotation, and quadriceps muscle force under a deep-knee-bend condition. Results The three different tibiofemoral conformities showed that the convex post provided the most natural-knee-like femoral rollback. This was also observed in internal rotation. In surface conformity, subject anatomy mimetic tibiofemoral surfaces showed the most natural -knee-like kinematics and quadriceps force. Conclusions This study confirmed that convex post design and subject anatomy mimetic tibiofemoral surfaces provided the most natural-knee-like kinematics. This study suggested that post-cam design and tibiofemoral surface conformity should be considered in conventional and customized TKA.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Ji-Hoon Nam
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
19
|
Wada K, Mikami H, Hamada D, Yamazaki T, Tomita T, Sairyo K. Can intraoperative kinematic analysis predict postoperative kinematics following total knee arthroplasty? A preliminary. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 65:21-26. [PMID: 29593171 DOI: 10.2152/jmi.65.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The preliminary study analyzed the relationship between intraoperative navigation-based kinematics and postoperative 2-dimensional/3-dimensional (2D/3D) image registration-based kinematics in total knee arthroplasty (TKA). Six knees in 5 patients were analyzed. All TKA procedures were performed using an image-free knee navigation system. Tibial internal rotation was assessed by intraoperative knee kinematics. At 1 year after surgery, tibial internal rotation was evaluated using a 2D/3D image registration technique under loaded and unloaded conditions. The correlation between intraoperative and postoperative data for the tibial internal rotation angle at 10 increments of knee flexion was then assessed. Difference in the knee flexion angle between the intraoperative and postoperative evaluations was adjusted to account for the sagittal cutting angle of the distal femur and proximal tibia. A correlation was found between the intraoperative and postoperative data for loaded knee flexion with this adjustment (Pearson's r = 0.725, p = 0.012). However, intraoperative kinematics was not significantly correlated with postoperative kinematics in the absence of loading. Larger adequately powered prospective studies are now needed to confirm our preliminary finding that postoperative loaded kinematics can be predicted by intraoperative evaluation. J. Med. Invest. 65:21-26, February, 2018.
Collapse
Affiliation(s)
- Keizo Wada
- Department of Orthopedics, Institute of Biomedical Science, the University of Tokushima Graduate School
| | - Hiroshi Mikami
- Department of Orthopaedic Surgery, Yoshinogawa Medical Center
| | - Daisuke Hamada
- Department of Orthopedics, Institute of Biomedical Science, the University of Tokushima Graduate School
| | - Takaharu Yamazaki
- Department of Information Systems, Saitama Institute of technology.,Global Center for Advanced Medical Engineering and Informatics
| | - Tetsuya Tomita
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine
| | - Koichi Sairyo
- Department of Orthopedics, Institute of Biomedical Science, the University of Tokushima Graduate School
| |
Collapse
|
20
|
Lin CC, Li JD, Lu TW, Kuo MY, Kuo CC, Hsu HC. A model-based tracking method for measuring 3D dynamic joint motion using an alternating biplane x-ray imaging system. Med Phys 2018; 45:3637-3649. [PMID: 29889983 DOI: 10.1002/mp.13042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSES To propose a new model-based tracking method for measuring three-dimensional (3D) dynamic joint kinematics using a clinical alternating biplane x-ray imaging system; and to quantify in vitro its errors in measuring ankle and knee motions at different motion speeds. METHODS A new model-based tracking method based on motion component partition and interpolation (MCPI) was developed for measuring 3D dynamic joint kinematics based on a clinical alternating biplane x-ray imaging system. Two detectors of the biplane imaging system placed perpendicular to each other were operated to collect alternating fluoroscopic images of the targeted joint during tasks. The CT data of the joint were also acquired for the reconstruction of volumetric and surface models of each of the associated bones. The CT-based models of the bones were first registered to the alternating images using a model-to-single-plane fluoroscopic image registration method, and the resulting bone poses were then refined using a two-level optimization with motion component partition and model vertex trajectory interpolation. The MCPI method was evaluated in vitro for measurement errors for an ankle and a knee specimen moving at different speeds against a standard reference provided by a highly accurate motion capture system. The positional and rotational errors of the measured bone poses were quantified in terms of the bias, precision, and root-mean-squared errors (RMSE), as well as the mean target registration error (mTRE), a final mTRE less than 2.5 mm indicating a successful registration. RESULTS The new method was found to have RMSE of bone pose measurements of less than 0.18 mm for translations and 0.72° for rotations for the ankle, and 0.33 mm and 0.74° for the knee with a high successful registration rate (>97%), and did not appear to be affected by joint motion speeds. Given the same alternating fluoroscopic images, the MCPI method outperformed the typical biplane analysis method assuming zero time offset between the two fluoroscopic views. The differences in performance between the methods were increased with increased joint motion speed. With the accurate bone pose data, the new method enabled talocrural, subtalar, and tibiofemoral kinematics measurements with submillimeter and subdegree accuracy, except for an RMSE of 1.04° for the internal/external rotation of the talocrural joint. CONCLUSIONS A new model-based tracking method based on MCPI has been developed for measuring dynamic joint motions using an alternating biplane x-ray imaging system widely available in medical centers. The MCPI method has been demonstrated in vitro to be highly accurate in determining the 3D kinematics of the bones of both the ankle joint complex and the knee. The current results suggest that the MCPI method would be an effective approach for measuring in vivo 3D kinematics of dynamic joint motion in a clinical setting equipped with an alternating biplane x-ray imaging system.
Collapse
Affiliation(s)
- Cheng-Chung Lin
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Jia-Da Li
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
| | - Tung-Wu Lu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
- Department of Orthopaedic Surgery, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Mei-Ying Kuo
- Department of Physical Therapy, China Medical University, Taichung, 40402, Taiwan
| | - Chien-Chung Kuo
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
21
|
Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion. Knee Surg Sports Traumatol Arthrosc 2018; 26:1589-1601. [PMID: 28884312 DOI: 10.1007/s00167-017-4670-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/01/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. METHODS Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. RESULTS The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. CONCLUSIONS After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
Collapse
|
22
|
Baumer TG, Dischler J, Mende V, Zauel R, van Holsbeeck M, Siegal DS, Divine G, Moutzouros V, Bey MJ. Effects of asymptomatic rotator cuff pathology on in vivo shoulder motion and clinical outcomes. J Shoulder Elbow Surg 2017; 26:1064-1072. [PMID: 28131679 PMCID: PMC5438772 DOI: 10.1016/j.jse.2016.11.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/15/2016] [Accepted: 11/25/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The incidence of asymptomatic rotator cuff tears has been reported to range from 15% to 39%, but the influence of asymptomatic rotator cuff pathology on shoulder function is not well understood. This study assessed the effects of asymptomatic rotator cuff pathology on shoulder kinematics, strength, and patient-reported outcomes. METHODS A clinical ultrasound examination was performed in 46 asymptomatic volunteers (age: 60.3 ± 7.5 years) with normal shoulder function to document the condition of their rotator cuff. The ultrasound imaging identified the participants as healthy (n = 14) or pathologic (n = 32). Shoulder motion was measured with a biplane x-ray imaging system, strength was assessed with a Biodex (Biodex Medical Systems, Inc., Shirley, NY, USA), and patient-reported outcomes were assessed using the Western Ontario Rotator Cuff Index and visual analog scale pain scores. RESULTS Compared with healthy volunteers, those with rotator cuff pathology had significantly less abduction (P = .050) and elevation (P = .041) strength, their humerus was positioned more inferiorly on the glenoid (P = .018), and the glenohumeral contact path length was longer (P = .007). No significant differences were detected in the Western Ontario Rotator Cuff Index, visual analog scale, range of motion, or acromiohumeral distance. CONCLUSIONS The differences observed between the healthy volunteers and those with asymptomatic rotator cuff pathology lend insight into the changes in joint mechanics, shoulder strength, and conventional clinical outcomes associated with the early stages of rotator cuff pathology. Furthermore, these findings suggest a plausible mechanical progression of kinematic and strength changes associated with the development of rotator cuff pathology.
Collapse
Affiliation(s)
- Timothy G Baumer
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA.
| | - Jack Dischler
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA
| | - Veronica Mende
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA
| | - Roger Zauel
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA
| | | | - Daniel S Siegal
- Department of Radiology, Henry Ford Health System, Detroit, MI, USA
| | - George Divine
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Vasilios Moutzouros
- Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Michael J Bey
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
23
|
Feasibility of using MRIs to create subject-specific parallel-mechanism joint models. J Biomech 2017; 53:45-55. [DOI: 10.1016/j.jbiomech.2016.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 11/21/2022]
|
24
|
ÖZADA NERIMAN. THE EFFECT OF COLLATERAL LIGAMENT INJURY ON CARTILAGE CONTACT IN KNEE JOINTS MODELED WITH SIX DEGREES OF FREEDOM. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to create a kinematic model of the knee joint with six degrees of freedom (DOF) and evaluate the effect of medial collateral ligament (MCL) and lateral collateral ligament (LCL) rupture on cartilage contact point distribution on the tibia during flexion. We hypothesized that collateral ligament contributions vary over six DOF of knee joint articulation and affect the cartilage contact point distribution during joint articulation. The ligament contributions and distribution of joint cartilage contact points cannot be fully assessed with simplified joint models or invasive experiments. Therefore, we developed a new model in which the tibia and femur centers of mass were determined from their surface geometry, and the displacement of the moving tibia was determined from the displacements of the attached ligaments. Compared to the intact knee, the tibia with the LCL removed had higher medial translation and lower valgus rotation. The tibia with the MCL removed had higher lateral translation and higher valgus rotation than the intact knee. At 0[Formula: see text], 30[Formula: see text], and 60[Formula: see text], the tibia with the LCL removed had more internal rotation than the intact knee. Understanding six DOF knee joint kinematics with integration of ligament contributions and cartilage contact positions is useful for the diagnosis of ligament injuries and the design of articulating surfaces for total arthroplasty.
Collapse
Affiliation(s)
- NERIMAN ÖZADA
- Department of Mechanical Engineering, Eastern Mediterranean University, Gazimagusa, North Cyprus, Turkey
| |
Collapse
|
25
|
Effects of soft tissue artifacts on differentiating kinematic differences between natural and replaced knee joints during functional activity. Gait Posture 2016; 46:154-60. [PMID: 27131194 DOI: 10.1016/j.gaitpost.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/06/2015] [Accepted: 03/08/2016] [Indexed: 02/02/2023]
Abstract
Functional performance of total knee replacement (TKR) is often assessed using skin marker-based stereophotogrammetry, which can be affected by soft tissue artifacts (STA). The current study aimed to compare the STA and their effects on the kinematics of the knee between twelve patients with TKR and twelve healthy controls during sit-to-stand, and to assess the effects of STA on the statistical between-group comparisons. Each subject performed the sit-to-stand task while motions of the skin markers and the knees were measured by a motion capture system integrated with a three-dimensional fluoroscopy technique. The bone motions measured by the three-dimensional fluoroscopy were taken as the gold standard, with respect to which the STA of the markers were obtained. The STA were found to affect the calculated segmental poses and knee kinematics between the groups differently. The STA resulted in artefactual posterior displacements of the knee joint center, with magnitudes significantly greater in TKR than controls (p<0.01). The STA-induced knee external rotations in TKR were smaller than those in controls with mean differences of 2.3-3.0°. These between-group differences in the STA effects on knee kinematics in turn concealed the true between-group differences in the anterior-posterior translation and internal/external rotation of knee while leading to false significant between-group differences in the abduction/adduction and proximal-distal translation.
Collapse
|
26
|
Ozada N. Biomechanical model of knee collateral ligament injury with six degrees of freedom. Med Biol Eng Comput 2015; 54:821-30. [PMID: 26307202 DOI: 10.1007/s11517-015-1373-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/11/2015] [Indexed: 11/29/2022]
Abstract
Knee ligament injuries cannot be fully described using simplified joint models or by experimentation alone. The study objective was to model the contributions of the collateral ligaments over six degrees of freedom (DOF) of knee joint articulation to aid the diagnosis of knee ligament injuries. A kinematic model of the knee joint with six DOF was developed using the Musculoskeletal Joint Modeller software, and the effects of medial collateral ligament (MCL) and lateral collateral ligament (LCL) rupture were evaluated. The centres of mass of the tibia and femur were determined from their surface geometry, and the displacement of the moving tibia was determined by measuring the displacements of the attached ligaments with respect to its centre of mass. Compared to an intact knee, a tibia without the LCL had higher medial translation and lower valgus rotation, while a tibia without the MCL had higher lateral translation and higher valgus rotation. At 0°, 30° and 60° of flexion, the tibia without the LCL had more internal rotation than an intact knee. Understanding the complete kinematics of knee joints may improve the diagnosis of ligament injuries and guide tissue replacement surgery. Predicting joint behaviour in the clinic after treatment might benefit from a combined modelling approach that includes both clinicians and basic researchers.
Collapse
Affiliation(s)
- Neriman Ozada
- Department of Mechanical Engineering, Eastern Mediterranean University, Via Mersin 10, Gazimagusa, North Cyprus, Turkey.
| |
Collapse
|
27
|
Feng Y, Tsai TY, Li JS, Wang S, Hu H, Zhang C, Rubash HE, Li G. Motion of the femoral condyles in flexion and extension during a continuous lunge. J Orthop Res 2015; 33:591-7. [PMID: 25641056 DOI: 10.1002/jor.22826] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/07/2015] [Indexed: 02/04/2023]
Abstract
Numerous studies have reported on in-vivo posterior femoral condyle translations during various activities of the knee. However, no data has been reported on the knee motion during a continuous flexion-extension cycle. Further, few studies have investigated the gender variations on the knee kinematics. This study quantitatively determined femoral condylar motion of 10 male and 10 female knees during a continuous weightbearing flexion-extension cycle using two-dimensional to three-dimensional fluoroscopic tracking technique. The knees were CT-scanned to create three-dimensional models of the tibia and femur. Continuous images of each subject were taken using a single-fluoroscopic imaging system. The knee kinematics were measured along the motion path using geometric center axis of the femur. The results indicated that statistical differences between the flexion and extension motions were only found in internal-external tibial rotation and lateral femoral condylar motion at the middle range of flexion angles. At low flexion angles, male knees have greater external tibial rotation and more posteriorly positioned medial femoral condyle than females. The knee did not show a specific pivoting type of rotation with flexion. Axial rotation center varied from lateral to medial compartments of the knee. These data could provide useful information for understanding physiological motion of normal knees.
Collapse
Affiliation(s)
- Yong Feng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China; Department of Orthopaedic Surgery, Bioengineering Laboratory, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, GRJ 1215, Boston, Massachusetts, 02114
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fallahiarezoodar A, Abdul Kadir MR, Alizadeh M, Naveen SV, Kamarul T. Geometric variable designs of cam/post mechanisms influence the kinematics of knee implants. Knee Surg Sports Traumatol Arthrosc 2014; 22:3019-27. [PMID: 25149643 DOI: 10.1007/s00167-014-3227-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Reproducing the femoral rollback through specially designed mechanism in knee implants is required to achieve full knee function in total knee arthroplasty. Most contemporary implants use cam/post mechanism to replace the function of Posterior Cruciate Ligament. This study was aimed to determine the most appropriate cam and post designs to produce normal femoral rollback of the knee. METHODS Three different cams (triangle, ellipse, and circle) and three different posts (straight, convex, concave) geometries were considered in this study and were analysed using kinematic analyses. Femoral rollback did not occur until reaching 50° of knee flexion. Beyond this angle, two of the nine combinations demonstrate poor knee flexion and were eliminated from the study. RESULTS The combination of circle cam with concave post, straight post and convex post showed 15.6, 15.9 and 16.1 mm posterior translation of the femur, respectively. The use of ellipse cam with convex post and straight post demonstrated a 15.3 and 14.9 mm femoral rollback, whilst the combination of triangle cam with convex post and straight post showed 16.1 and 15.8 mm femoral rollback, respectively. CONCLUSION The present study demonstrates that the use of circle cam and convex post created the best femoral rollback effect which in turn produces the highest amount of knee flexion. The findings of the study suggest that if the design is applied for knee implants, superior knee flexion may be possible for future patients. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Ali Fallahiarezoodar
- Medical Devices & Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | | | | | | | | |
Collapse
|
29
|
Charbonnier C, Chagué S, Kolo FC, Chow JCK, Lädermann A. A patient-specific measurement technique to model shoulder joint kinematics. Orthop Traumatol Surg Res 2014; 100:715-9. [PMID: 25281547 DOI: 10.1016/j.otsr.2014.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/09/2014] [Accepted: 06/24/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Measuring dynamic in vivo shoulder kinematics is crucial to better understanding numerous pathologies. Motion capture systems using skin-mounted markers offer good solutions for non-invasive assessment of shoulder kinematics during dynamic movement. However, none of the current motion capture techniques have been used to study translation values at the joint, which is crucial to assess shoulder instability. The aim of the present study was to develop a dedicated patient-specific measurement technique based on motion capture and magnetic resonance imaging (MRI) to determine shoulder kinematics accurately. HYPOTHESIS Estimation of both rotations and translations at the shoulder joint using motion capture is feasible thanks to a patient-specific kinematic chain of the shoulder complex reconstructed from MRI data. MATERIALS AND METHODS We implemented a patient-specific kinematic chain model of the shoulder complex with loose constraints on joint translation. To assess the effectiveness of the technique, six subjects underwent data acquisition simultaneously with fluoroscopy and motion capture during flexion and empty-can abduction. The reference 3D shoulder kinematics was reconstructed from fluoroscopy and compared to that obtained from the new technique using skin markers. RESULTS Root mean square errors (RMSE) for shoulder orientation were within 4° (mean range: 2.0°-3.4°) for each anatomical axis and each motion. For glenohumeral translations, maximum RMSE for flexion was 3.7mm and 3.5mm for empty-can abduction (mean range: 1.9-3.3mm). Although the translation errors were significant, the computed patterns of humeral translation showed good agreement with published data. DISCUSSION To our knowledge, this study is the first attempt to calculate both rotations and translations at the shoulder joint based on skin-mounted markers. Results were encouraging and can serve as reference for future developments. The proposed technique could provide valuable kinematic data for the study of shoulder pathologies. LEVEL OF EVIDENCE Basic Science Study.
Collapse
Affiliation(s)
- C Charbonnier
- Artanim Foundation, Medical Research Department, Geneva, Switzerland.
| | - S Chagué
- Artanim Foundation, Medical Research Department, Geneva, Switzerland
| | - F C Kolo
- Rive Droite Radiology Center, Geneva, Switzerland
| | - J C K Chow
- Department of Geomatics Engineering, University of Calgary, Calgary, Canada
| | - A Lädermann
- Division of Orthopaedics and Trauma Surgery, La Tour Hospital, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Lin CC, Lu TW, Wang TM, Hsu CY, Hsu SJ, Shih TF. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach. J Biomech 2014; 47:3310-7. [PMID: 25218506 DOI: 10.1016/j.jbiomech.2014.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Accurate measurement of the coupled intervertebral motions is helpful for understanding the etiology and diagnosis of relevant diseases, and for assessing the subsequent treatment. No study has reported the in vivo, dynamic and three-dimensional (3D) intervertebral motion of the cervical spine during active axial rotation (AR) and lateral bending (LB) in the sitting position. The current study fills the gap by measuring the coupled intervertebral motions of the subaxial cervical spine in ten asymptomatic young adults in an upright sitting position during active head LB and AR using a volumetric model-based 2D-to-3D registration method via biplane fluoroscopy. Subject-specific models of the individual vertebrae were derived from each subject's CT data and were registered to the fluoroscopic images for determining the 3D poses of the subaxial vertebrae that were used to obtain the intervertebral kinematics. The averaged ranges of motion to one side (ROM) during AR at C3/C4, C4/C5, C5/C6, and C6/C7 were 4.2°, 4.6°, 3.0° and 1.3°, respectively. The corresponding values were 6.4°, 5.2°, 6.1° and 6.1° during LB. Intervertebral LB (ILB) played an important role in both AR and LB tasks of the cervical spine, experiencing greater ROM than intervertebral AR (IAR) (ratio of coupled motion (IAR/ILB): 0.23-0.75 in LB, 0.34-0.95 in AR). Compared to the AR task, the ranges of ILB during the LB task were significantly greater at C5/6 (p=0.008) and C6/7 (p=0.001) but the range of IAR was significantly smaller at C4/5 (p=0.02), leading to significantly smaller ratios of coupled motions at C4/5 (p=0.0013), C5/6 (p<0.001) and C6/7 (p=0.0037). The observed coupling characteristics of the intervertebral kinematics were different from those in previous studies under discrete static conditions in a supine position without weight-bearing, suggesting that the testing conditions likely affect the kinematics of the subaxial cervical spine. While C1 and C2 were not included owing to technical limitations, the current results nonetheless provide baseline data of the intervertebral motion of the subaxial cervical spine in asymptomatic young subjects under physiological conditions, which may be helpful for further investigations into spine biomechanics.
Collapse
Affiliation(s)
- Cheng-Chung Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Tung-Wu Lu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC; Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| | - Ting-Ming Wang
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan, ROC; Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chao-Yu Hsu
- Department of Radiology, School of Medicine, National Taiwan University, Taipei, Taiwan, ROC; Department of Medical Imaging, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| | - Shih-Jung Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Ting-Fang Shih
- Department of Radiology, School of Medicine, National Taiwan University, Taipei, Taiwan, ROC; Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
31
|
A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J Biomech 2014; 47:50-8. [DOI: 10.1016/j.jbiomech.2013.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 11/22/2022]
|
32
|
Fiacchi F, Zambianchi F, Digennaro V, Ricchiuto I, Mugnai R, Catani F. In vivo kinematics of medial unicompartmental osteoarthritic knees during activities of daily living. Knee 2014; 21 Suppl 1:S10-4. [PMID: 25382361 DOI: 10.1016/s0968-0160(14)50003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 02/02/2023]
Abstract
Few studies exist describing unicompartmental osteoarthritic knee kinematics. Moreover, the role of the anterior cruciate ligament (ACL) in the determination of knee kinematics has not been fully described. The objective of the current study was to analyze the in vivo kinematics of knees with medial osteoarthritis (OA) and intact ACL during closed and open chained motion. Eight patients scheduled for UKA diagnosed with primary medial OA underwent knee CT-scans and video-fluoroscopy. Fluoroscopic analysis included stair climbing, chair rising and leg extension. Three-dimensional bone positions were obtained from each image by iterative procedures using a CAD-model-based shape-matching technique. Patterns of axial rotation and anterior-posterior (AP) motion of the medial and lateral femoral condyle were obtained with specific software. The femur reported an overall external rotation relative to the tibia from extension to flexion in all tasks. Average AP translation of the medial femoral condyle were smaller in open-chained tasks than in weight-bearing conditions. Average AP motion of the lateral femoral condyle reported an overall posterior translation with knee flexion. The absent natural "screw-home" mechanism and the lack of medial condyle posterior translation was explained by bone-cartilage defects and meniscal degeneration. Relevant findings were the kinematic pattern differences between weight-bearing and open chained activities, suggesting that in biphasic muscle contraction and unloaded conditions, the function of the cruciate ligaments was not physiological. The kinematics of knees with medial OA and intact ACL differed from healthy knees.
Collapse
Affiliation(s)
- Francesco Fiacchi
- Department of Orthopaedic Surgery, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio-Emilia, Modena, Italy
| | - Francesco Zambianchi
- Department of Orthopaedic Surgery, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio-Emilia, Modena, Italy.
| | - Vitantonio Digennaro
- Department of Orthopaedic Surgery, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio-Emilia, Modena, Italy
| | - Ippazio Ricchiuto
- Department of Orthopaedic Surgery, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio-Emilia, Modena, Italy
| | - Raffaele Mugnai
- Department of Orthopaedic Surgery, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio-Emilia, Modena, Italy
| | - Fabio Catani
- Department of Orthopaedic Surgery, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio-Emilia, Modena, Italy
| |
Collapse
|
33
|
Comparison of kinematics of ACL-deficient and healthy knees during passive flexion and isometric leg press. Knee 2013; 20:505-10. [PMID: 23044469 DOI: 10.1016/j.knee.2012.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 08/26/2012] [Accepted: 09/06/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND Studying the kinematics of the ACL deficient (ACLD) knees, during different physiological activities and muscle contraction patterns, can improve our understanding of the joint's altered biomechanics due to ACL deficiency as well as the efficacy and safety of the rehabilitations exercises. METHODS Twenty-five male volunteers, including 11 normal and 14 unilateral ACLD subjects, participated in this study. The kinematics of the injured knees of the ACLD subjects was compared with their intact knees and the healthy group during passive flexion and isometric leg press with the knees flexed from full extension to 45° flexion, with 15° intervals. An accurate registration algorithm was used to obtain the three dimensional kinematical parameters, from magnetic resonance images. RESULTS The ACL deficiency mainly altered the tibial anterior translation, and to some extent its internal rotation, with the change in other parameters not significant. During leg press, the anterior translation of the ACLD knees was significantly larger than that of the normal knees at 30° flexion, but not at 45°. Comparison of the anterior translations of the ACLD knees during leg press with that of the passive flexion revealed improved consistency (CVs changed from 1.2 and 4.0 to 0.6 and 0.6, at 30° and 45° flexion, respectively), but considerable larger translations (means increased by 6.2 and 4.9mm, at 30° and 45° flexion, respectively). CONCLUSION The simultaneous contraction of the quadriceps and hamstrings during leg press, although reduces the knee laxity, cannot compensate for the loss of the ACL to restore the normal kinematics of the joint, at least during early flexion.
Collapse
|
34
|
Lin CC, Lu TW, Shih TF, Tsai TY, Wang TM, Hsu SJ. Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion. Med Phys 2013; 40:031912. [PMID: 23464327 DOI: 10.1118/1.4792309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. METHODS The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopy images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. RESULTS The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than -0.5 (0.6) and -0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. CONCLUSIONS The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method was considered accurate for measuring 3D intervertebral kinematics during various functional activities for research and clinical applications.
Collapse
Affiliation(s)
- Cheng-Chung Lin
- Institute of Biomedical Engineering, National Taiwan University, Taiwan 10051, Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Leng S, Zhao K, Qu M, An KN, Berger R, McCollough CH. Dynamic CT technique for assessment of wrist joint instabilities. Med Phys 2013; 38 Suppl 1:S50. [PMID: 21978117 DOI: 10.1118/1.3577759] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop a 4D [three-dimensional (3D) + time] CT technique to capture high spatial and temporal resolution images of wrist joint motion so that dynamic joint instabilities can be detected before the development of static joint instability and onset of osteoarthritis (OA). METHODS A cadaveric wrist was mounted onto a custom motion simulator and scanned with a dual source CT scanner during radial-ulnar deviation. A dynamic 4D CT technique was utilized to reconstruct images at 20 equidistant time points from one motion cycle. 3D images of carpal bones were generated using volume rendering techniques (VRT) at each of the 20 time points and then 4D movies were generated to depict the dynamic joint motion. The same cadaveric wrist was also scanned after cutting all portions of the scapholunate interosseus ligament to simulate scapholunate joint instability. Image quality were assessed on an ordinal scale (1-4, 4 being excellent) by three experienced orthopedic surgeons (specialized in hand surgery) by scoring 2D axial images. Dynamic instability was evaluated by the same surgeons by comparing the two 4D movies of joint motion. Finally, dose reduction was investigated using the cadaveric wrist by scanning at different dose levels to determine the lowest radiation dose that did not substantially alter diagnostic image quality. RESULTS The mean image quality scores for dynamic and static CT images were 3.7 and 4.0, respectively. The carpal bones, distal radius and ulna, and joint spaces were clearly delineated in the 3D VRT images, without motion blurring or banding artifacts, at all time points during the motion cycle. Appropriate viewing angles could be interactively selected to view any articulating structure using different 3D processing techniques. The motion of each carpal bone and the relative motion among the carpal bones were easily observed in the 4D movies. Joint instability was correctly and easily detected in the scan performed after the ligament was cut by observing the relative motion between the scaphoid and lunate bones. Diagnostic capability was not sacrificed with a volume CT dose index (CTDI(vol)) as low as 18 mGy for the whole scan, with estimated skin dose of approximately 33 mGy, which is much lower than the threshold for transient skin erythema (2000 mGy). CONCLUSIONS The proposed dynamic 4D CT imaging technique generated high spatial and high temporal resolution images without requiring periodic joint motion. Preliminary results from this cadaveric study demonstrate the feasibility of detecting joint instability using this technique.
Collapse
Affiliation(s)
- Shuai Leng
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Lin CC, Zhang S, Frahm J, Lu TW, Hsu CY, Shih TF. A slice-to-volume registration method based on real-time magnetic resonance imaging for measuring three-dimensional kinematics of the knee. Med Phys 2013; 40:102302. [DOI: 10.1118/1.4820369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Cheng-Chung Lin
- Institute of Biomedical Engineering, National Taiwan University, Taiwan 10051, Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Lin CC, Lu TW, Wang TM, Hsu CY, Shih TF. Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics. Med Eng Phys 2013; 36:267-74. [PMID: 24011956 DOI: 10.1016/j.medengphy.2013.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/27/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
Several 2D-to-3D image registration methods are available for measuring 3D vertebral motion but their performance has not been evaluated under the same experimental protocol. In this study, four major types of fluoroscopy-to-CT registration methods, with different use of surface vs. volumetric models, and single-plane vs. bi-plane fluoroscopy, were evaluated: STS (surface, single-plane), VTS (volumetric, single-plane), STB (surface, bi-plane) and VTB (volumetric, bi-plane). Two similarity measures were used: 'Contour Difference' for STS and STB and 'Weighted Edge-Matching Score' for VTS and VTB. Two cadaveric porcine cervical spines positioned in a box filled with paraffin and embedded with four radiopaque markers were CT scanned to obtain vertebral models and marker coordinates, and imaged at ten static positions using bi-plane fluoroscopy for subsequent registrations using different methods. The registered vertebral poses were compared to the gold standard poses defined by the marker positions determined using CT and Roentgen stereophotogrammetry analysis. The VTB was found to have the highest precision (translation: 0.4mm; rotation: 0.3°), comparable with the VTS in rotations (0.3°), and the STB in translations (0.6mm). The STS had the lowest precision (translation: 4.1mm; rotation: 2.1°).
Collapse
Affiliation(s)
- Cheng-Chung Lin
- Institute of Biomedical Engineering, National Taiwan University, Taiwan, ROC
| | - Tung-Wu Lu
- Institute of Biomedical Engineering, National Taiwan University, Taiwan, ROC; Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taiwan, ROC.
| | - Ting-Ming Wang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taiwan, ROC
| | - Chao-Yu Hsu
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University Hospital Hsin-Chu Branch, Taiwan, ROC; Department of Radiology, College of Medicine, National Taiwan University, Taiwan, ROC
| | - Ting-Fang Shih
- Department of Radiology, College of Medicine, National Taiwan University, Taiwan, ROC; Department of Medical Imaging, National Taiwan University Hospital, Taiwan, ROC
| |
Collapse
|
38
|
Chen CC, Lin CC, Lu TW, Chiang H, Chen YJ. Feasibility of differential quantification of 3D temporomandibular kinematics during various oral activities using a cone-beam computed tomography-based 3D fluoroscopic method. J Dent Sci 2013. [DOI: 10.1016/j.jds.2012.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
An in vivo subject-specific 3D functional knee joint model using combined MR imaging. Int J Comput Assist Radiol Surg 2012; 8:741-50. [PMID: 23212459 DOI: 10.1007/s11548-012-0801-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE We aim to quantitatively characterise the knee joint function in vivo under body-weight-bearing conditions via subject-specific models extracted from magnetic resonance (MR) data, in order to better understand the knee joint kinematic function in 3D. METHODS Six healthy volunteers without any record of knee abnormality were scanned using a combined MR imaging strategy to record quasi-squatting motion and 3D knee anatomy. After a semi-automatic segmentation to delineate tibio-femoral articulation components, motion data were mapped to the anatomical data using a bi-rigid registration in order to achieve six degrees of freedom. The individual knee joint function was characterised by analysing the tibio-femoral articulation contact mechanism based on the reconstructed models in 3D and MR images in 2D. Contact points were extracted and their trajectory was plotted on the tibia plateau. RESULTS The 3D models clearly show the relative rotation and gliding between tibia and femur during global flexion. Within the measured flexion arc, the contact points move less between 30[Formula: see text] and 100[Formula: see text] on both tibial plateaux as compared to that on the rest of the flexion arc. Four out of the six volunteers showed a global pattern of less moving extent of contact points on the medial tibial plateau than on the lateral tibial plateau in both 3D and 2D. CONCLUSION The proposed subject-specific model is able to characterise knee joint kinematic function. It provides a way to describe knee joint surface kinematics quantitatively, which may help to better understand the knee function and joint derangements.
Collapse
|
40
|
Tsai TY, Lu TW, Kuo MY, Hsu HC. QUANTIFICATION OF THREE-DIMENSIONAL MOVEMENT OF SKIN MARKERS RELATIVE TO THE UNDERLYING BONES DURING FUNCTIONAL ACTIVITIES. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237209001283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Skin marker-based stereophotogrammetry has been widely used in the in vivo, noninvasive measurement of three-dimensional (3D) joint kinematics in many clinical applications. However, the measured poses of body segments are subject to errors called soft tissue artifacts (STA). No study has reported the unrestricted STA of markers on the thigh and shank in normal subjects during functional activities. The purpose of this study was to assess the 3D movement of skin markers relative to the underlying bones in normal subjects during functional activities using a noninvasive method based on the integration of 3D fluoroscopy and stereophotogrammetry. Generally, thigh markers had greater STA than shank ones and the STA of the markers were in nonlinear relationships with knee flexion angles. The STA of a marker also appeared to vary among subjects and were affected by activities. This suggests that correction of STA in human motion analysis may have to consider the multijoint nature of functional activities such as using a global compensation approach with individual anthropometric data. The results of the current study may be helpful for establishing guidelines of marker location selection and for developing STA compensation methods in human motion analysis.
Collapse
Affiliation(s)
- Tsung-Yuan Tsai
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Tung-Wu Lu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mei-Ying Kuo
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopaedics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
41
|
Dumas R, Moissenet F, Gasparutto X, Cheze L. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc Inst Mech Eng H 2012; 226:146-60. [DOI: 10.1177/0954411911431396] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several three-dimensional (3D) lower-limb musculo-skeletal models have been developed for gait analysis and different hip, knee and ankle joint models have been considered in the literature. Conversely to the influence of the musculo-tendon geometry, the influence of the joint models - i.e. number of degrees of freedom and passive joint moments - on the estimated musculo-tendon forces and 3D joint reaction forces has not been extensively examined. In this paper musculo-tendon forces and 3D joint reaction forces have been estimated for one subject and one gait cycle with nine variations of a musculoskeletal model and outputs have been compared to measured electromyographic signals and knee joint contact forces. The model outputs are generally in line with the measured signals. However, the 3D joint reaction forces were higher than published values and the contact forces measured for the subject. The results of this study show that, with more degrees of freedom in the model, the musculo-tendon forces and the 3D joint reaction forces tend to increase but with some redistribution between the muscles. In addition, when taking into account passive joint moments, the 3D joint reaction forces tend to decrease during the stance phase and increase during the swing phase. Although further investigations are needed, a five-degree-of-freedom lower-limb musculo-skeletal model with some angle-dependent joint coupling and stiffness seems to provide satisfactory musculo-tendon forces and 3D joint reaction forces.
Collapse
Affiliation(s)
- Raphaël Dumas
- Laboratoire de Biomécanique et Mécanique des Chocs – UMR_T 9406, Université Lyon 1 - IFSTTAR,Villeurbanne, France
| | - Florent Moissenet
- Laboratoire de Biomécanique et Mécanique des Chocs – UMR_T 9406, Université Lyon 1 - IFSTTAR,Villeurbanne, France
| | - Xavier Gasparutto
- Laboratoire de Biomécanique et Mécanique des Chocs – UMR_T 9406, Université Lyon 1 - IFSTTAR,Villeurbanne, France
| | - Laurence Cheze
- Laboratoire de Biomécanique et Mécanique des Chocs – UMR_T 9406, Université Lyon 1 - IFSTTAR,Villeurbanne, France
| |
Collapse
|
42
|
Biomechanics of human movement and its clinical applications. Kaohsiung J Med Sci 2012; 28:S13-25. [PMID: 22301008 DOI: 10.1016/j.kjms.2011.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 11/21/2022] Open
Abstract
All life forms on earth, including humans, are constantly subjected to the universal force of gravitation, and thus to forces from within and surrounding the body. Through the study of the interaction of these forces and their effects, the form, function and motion of our bodies can be examined and the resulting knowledge applied to promote quality of life. Under gravity and other loads, and controlled by the nervous system, human movement is achieved through a complex and highly coordinated mechanical interaction between bones, muscles, ligaments and joints within the musculoskeletal system. Any injury to, or lesion in, any of the individual elements of the musculoskeletal system will change the mechanical interaction and cause degradation, instability or disability of movement. On the other hand, proper modification, manipulation and control of the mechanical environment can help prevent injury, correct abnormality, and speed healing and rehabilitation. Therefore, understanding the biomechanics and loading of each element during movement using motion analysis is helpful for studying disease etiology, making decisions about treatment, and evaluating treatment effects. In this article, the history and methodology of human movement biomechanics, and the theoretical and experimental methods developed for the study of human movement, are reviewed. Examples of motion analysis of various patient groups, prostheses and orthoses, and sports and exercises, are used to demonstrate the use of biomechanical and stereophotogrammetry-based human motion analysis studies to address clinical issues. It is suggested that further study of the biomechanics of human movement and its clinical applications will benefit from the integration of existing engineering techniques and the continuing development of new technology.
Collapse
|
43
|
Bey MJ, Peltz CD, Ciarelli K, Kline SK, Divine GW, van Holsbeeck M, Muh S, Kolowich PA, Lock TR, Moutzouros V. In vivo shoulder function after surgical repair of a torn rotator cuff: glenohumeral joint mechanics, shoulder strength, clinical outcomes, and their interaction. Am J Sports Med 2011; 39:2117-29. [PMID: 21737834 PMCID: PMC4601100 DOI: 10.1177/0363546511412164] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Surgical repair of a torn rotator cuff is based on the belief that repairing the tear is necessary to restore normal glenohumeral joint (GHJ) mechanics and achieve a satisfactory clinical outcome. HYPOTHESIS Dynamic joint function is not completely restored by rotator cuff repair, thus compromising shoulder function and potentially leading to long-term disability. STUDY DESIGN Controlled laboratory study and Case series; Level of evidence, 4. METHODS Twenty-one rotator cuff patients and 35 control participants enrolled in the study. Biplane radiographic images were acquired bilaterally from each patient during coronal-plane abduction. Rotator cuff patients were tested at 3, 12, and 24 months after repair of a supraspinatus tendon tear. Control participants were tested once. Glenohumeral joint kinematics and joint contact patterns were accurately determined from the biplane radiographic images. Isometric shoulder strength and patient-reported outcomes were measured at each time point. Ultrasound imaging assessed rotator cuff integrity at 24 months after surgery. RESULTS Twenty of 21 rotator cuff repairs appeared intact at 24 months after surgery. The humerus of the patients' repaired shoulder was positioned more superiorly on the glenoid than both the patients' contralateral shoulder and the dominant shoulder of control participants. Patient-reported outcomes improved significantly over time. Shoulder strength also increased over time, although strength deficits persisted at 24 months for most patients. Changes over time in GHJ mechanics were not detected for either the rotator cuff patients' repaired or contralateral shoulders. Clinical outcome was associated with shoulder strength but not GHJ mechanics. CONCLUSION Surgical repair of an isolated supraspinatus tear may be sufficient to keep the torn rotator cuff intact and achieve satisfactory patient-reported outcomes, but GHJ mechanics and shoulder strength are not fully restored with current repair techniques. CLINICAL RELEVANCE The study suggests that current surgical repair techniques may be effective for reducing pain but have not yet been optimized for restoring long-term shoulder function.
Collapse
Affiliation(s)
- Michael J. Bey
- Bone and Joint Center, Henry Ford Hospital, Detroit, Michigan
,Address correspondence to Michael J. Bey, PhD, Bone and Joint Center, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202 ()
| | | | | | | | - George W. Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | | | - Stephanie Muh
- Department of Orthopaedic Surgery, Henry Ford Hospital, Detroit, Michigan
| | | | - Terrence R. Lock
- Department of Orthopaedic Surgery, Henry Ford Hospital, Detroit, Michigan
| | | |
Collapse
|
44
|
Bennour S, Harshe M, Romdhane L, Merlet JP. A new experimental set-up based on a parallel cable robot for analysis and control of human motion. Comput Methods Biomech Biomed Engin 2011. [DOI: 10.1080/10255842.2011.592372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Tsai TY, Lu TW, Kuo MY, Lin CC. Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J Biomech 2011; 44:1182-8. [PMID: 21296352 DOI: 10.1016/j.jbiomech.2011.01.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/27/2022]
Abstract
Biomechanics of the knee during stair-ascent has mostly been studied using skin-marker-based motion analysis techniques, but no study has reported a complete assessment of the soft tissue artifacts (STA) and their effects on the calculated joint center translation, angles and moments at the knee in normal subjects during this activity. This study aimed to bridge the gap. Twelve young adults walked up a three-step stair while data were acquired simultaneously from a three-dimensional motion capture system, a force plate and a dynamic fluoroscopy system. The "gold standards" of poses of the knee were obtained using a 3D fluoroscopy method. The STA of the markers on the thigh and shank were then calculated, together with their effects on the calculated joint center translations, angles and moments at the knee. The STA of the thigh markers were greater than those on the shank, leading to significantly underestimated flexion and extensor moments, but overestimated joint center translations during the first half of the stance phase. The results will be useful for a better understanding of the normal biomechanics of the knee during stair-ascent, as a baseline for future clinical applications and for developing a compensation method to correct for the effects of STA.
Collapse
Affiliation(s)
- Tsung-Yuan Tsai
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, ROC
| | | | | | | |
Collapse
|
46
|
Kuo MY, Tsai TY, Lin CC, Lu TW, Hsu HC, Shen WC. Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait Posture 2011; 33:379-84. [PMID: 21227694 DOI: 10.1016/j.gaitpost.2010.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/01/2010] [Accepted: 12/09/2010] [Indexed: 02/02/2023]
Abstract
The current study aimed to quantify the soft tissue artifacts of selected markers on the thigh and shank, and their effects on the calculated joint center translations, angles and moments of the knee during sit-to-stand. Ten patients with total knee replacements rose from a chair under simultaneous surveillance of a motion capture system, a force-plate and a fluoroscopy system. The "true" poses of the thigh and shank were defined by those of the femoral and tibial components obtained using a three-dimensional fluoroscopy method. The soft tissue artifacts of the skin markers were calculated as their movement relative to the underlying prosthesis components. The joint center translations, angles and moments at the knee were also calculated separately using skin markers and the registered prosthesis poses. Considerable soft tissue artifacts were found, leading to significantly underestimated flexion and internal rotation angles, and extensor moments, but overestimated joint center translations and adduction. The current study provides accurate data of the kinematics and kinetics of total knee replacements during sit-to-stand. The effects of soft tissue artifacts on the calculated joint center translations, angles and moments were also quantified for the first time in the literature. The results may help in developing guidelines for using skin markers and in establishing databases in the biomechanical assessment of sit-to-stand in patients with total knee replacements.
Collapse
Affiliation(s)
- Mei-Ying Kuo
- Institute of Biomedical Engineering, National Taiwan University, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
47
|
Belvedere C, Leardini A, Giannini S, Ensini A, Bianchi L, Catani F. Does medio-lateral motion occur in the normal knee? An in-vitro study in passive motion. J Biomech 2011; 44:877-84. [DOI: 10.1016/j.jbiomech.2010.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 12/03/2010] [Accepted: 12/03/2010] [Indexed: 11/25/2022]
|
48
|
Saveh AH, Katouzian HR, Chizari M. Measurement of an intact knee kinematics using gait and fluoroscopic analysis. Knee Surg Sports Traumatol Arthrosc 2011; 19:267-72. [PMID: 20563558 DOI: 10.1007/s00167-010-1190-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
A method has been introduced in this paper to measure the kinematics of a knee joint and to use it as a boundary condition to model the knee's mechanical behaviour. A mobile C-Arm fluoroscopy system (Ziehm Vision R) and a CCD camera were used for the measurement of a patient's knee kinematics. The fluoroscopic images were recorded with 12 fps and then sent to Matlab software (Mathworks, Natick, MA, USA) for image processing. In parallel, CT scan images of the knee bones were used to create the 3D anatomical geometry of the knee by aid of Mimics software (Materialise NV). However, the geometrical model of the two medial and lateral menisci was generated from MRI data. The 3D geometrical model of the knee was then sent to Abaqus finite element software (Simulia Dassault Systems) to analyse the knee joint contact loads by introducing the boundary condition which was obtained from fluoroscopic images. The finite element model was used to evaluate the stress distribution on the cartilages during the gait. The result was then compared with the experimental data of gait analysis. The comparison between the results showed a close agreement between the two outcomes.
Collapse
Affiliation(s)
- Amir Hossein Saveh
- Department of Biomechanical Engineering, Amirkabir University, Tehran, Iran.
| | | | | |
Collapse
|
49
|
Victor J, Labey L, Wong P, Innocenti B, Bellemans J. The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res 2010; 28:419-28. [PMID: 19890990 DOI: 10.1002/jor.21019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A comparative kinematics study was conducted on six cadaver limbs, comparing tibiofemoral kinematics in five conditions: unloaded, under a constant 130 N ankle load with a variable quadriceps load, with and without a simultaneous constant 50 N medial and lateral hamstrings load. Kinematics were described as translation of the projected centers of the medial (MFT) and lateral femoral condyles (LFT) in the horizontal plane of the tibia, and tibial axial rotation (TR) as a function of flexion angle. In passive conditions, the tibia rotated internally with increasing flexion to an average of -16 degrees (range: -12/-20 degrees , SD = 3.0 degrees ). Between 0 and 40 degrees flexion, the medial condyle translated forwards 4 mm (range: 0.8/5.5 mm, SD = 2.5 mm), followed by a gradual posterior translation, totaling -9 mm (range: -5.8/-18.5 mm, SD = 4.9 mm) between 40-140 degrees flexion. The lateral femoral condyle translated posteriorly with increasing flexion completing -25 mm (range: -22.6 to -28.2 mm, SD = 2.5 mm). Dynamic, loaded measurements simulating a deep knee bend were carried out in a knee rig. Under a fixed ankle load of 130 N and variable quadriceps loading, tibial rotation was inverted, mean TR = 4.7 degrees (range: -3.3 degrees /11.8 degrees SD = 5.4 degrees ), MFT = -0.5 mm (range: = -4.3/2.4 mm, SD = 2.4 mm), LFT = 3.3 mm (range: = -3.6/10.6 mm, SD = 5.1 mm). Compared to the passive condition, all these excursions were significantly different (p < or = 0.015). Adding medial and lateral hamstrings force of 50 N each reduced TR, MFT, and LFT significantly compared to the passive condition. In general, loading the knee with hamstrings and quadriceps reduces rotation and translation compared to the passive condition. Lateral hamstring action is more influential on knee kinematics than medial hamstrings action.
Collapse
Affiliation(s)
- Jan Victor
- Department of Orthopaedics, AZ St-Lucas, St-Lucaslaan 29, 8310 Brugge, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Tsai TY, Lu TW, Chen CM, Kuo MY, Hsu HC. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Med Phys 2010; 37:1273-84. [DOI: 10.1118/1.3301596] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|