1
|
Martelli S, Perilli E, Fan X, Rapagna S, Gupta A. Time-elapsed microstructural imaging of failure of the reverse shoulder implant. J Orthop Surg Res 2024; 19:180. [PMID: 38475917 DOI: 10.1186/s13018-024-04652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Reverse Shoulder Arthroplasties (RSA) have become a primary choice for improving shoulder function and pain. However, the biomechanical failure mechanism of the humeral component is still unclear. The present study reports a novel protocol for microstructural imaging of the entire humerus implant under load before and after fracture. METHODS A humerus specimen was obtained from a 75-year-old male donor. An expert surgeon implanted the specimen with a commonly used RSA implant (Aequalis reversed II, Stryker Orthopaedics, USA) and surgical procedure. The physiological glenohumeral contact force that maximized the distal implant migration was selected from a public repository ( orthoload.com ). Imaging and concomitant mechanical testing were performed using a large-volume micro-CT scanner (Nikon XT H 225 ST) and a custom-made compressive stage. Both when intact and once implanted, the specimen was tested under a pre-load and by imposing a constant deformation causing a physiological reaction load (650 N, 10 degrees adducted). The deformation of the implanted specimen was then increased up to fracture, which was identified by a sudden drop of the reaction force, and the specimen was then re-scanned. RESULTS The specimen's stiffness decreased from 874 N/mm to 464 N/mm after implantation, producing movements of the bone-implant interface consistent with the implant's long-term stability reported in the literature. The micro-CT images displayed fracture of the tuberosity, caused by a combined compression and circumferential tension, induced by the distal migration of the implant. CONCLUSION The developed protocol offers detailed information on implant mechanics under load relative to intact conditions and fracture, providing insights into the failure mechanics of RSA implants. This protocol can be used to inform future implant design and surgical technique improvements.
Collapse
Affiliation(s)
- Saulo Martelli
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, Gardens Point Campus, P'Block, Level 7, Room 717, Brisbane, QLD, 4000, Australia.
- Medical Devices Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
- Queensland Unit for Advanced Shoulder Research (QUASR), Queensland University of Technology, Brisbane, QLD, Australia.
| | - Egon Perilli
- Medical Devices Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Xiaolong Fan
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, Gardens Point Campus, P'Block, Level 7, Room 717, Brisbane, QLD, 4000, Australia
| | - Sophie Rapagna
- Medical Devices Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Ashish Gupta
- Greenslopes Private Hospital, Brisbane, QLD, Australia
- Queensland Unit for Advanced Shoulder Research (QUASR), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Favre P, Bischoff J. Identifying the patient harms to include in an in silico clinical trial. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107735. [PMID: 37544163 DOI: 10.1016/j.cmpb.2023.107735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Clinical trials represent a crucial step in the development and approval of medical devices. These trials involve evaluating the safety and efficacy of the device in a controlled setting with human subjects. However, traditional clinical trials can be expensive, time-consuming, and ethically challenging. Augmenting clinical trials with data from computer simulations, so called in silico clinical trials (ISCT), has the potential to address these challenges while satisfying regulatory requirements. However, determination of the patient harms in scope of an ISCT is necessary to ensure all harms are sufficiently addressed while maximizing the utility of the ISCT. This topic is currently lacking guidance. The objective of this work is to propose a general method to determine which patient harms should be included in an ISCT for a regulatory submission. METHODS The proposed method considers the risk associated with the harm, the impact of the device on the likelihood of occurrence of the harm and the technical feasibility of evaluating the harm via ISCT. Consideration of the risk associated with the harm provides maximum clinical impact of the ISCT, in terms of focusing on those failure modes which are most relevant to the patient population. Consideration of the impact of the device on a particular harm, and the technical feasibility of modeling a particular harm supports that the technical effort is devoted to a problem that (1) is relevant to the device in question, and (2) can be solved with contemporary modeling techniques. RESULTS AND CONCLUSIONS As a case study, the proposed method is applied to a total shoulder replacement humeral system. With this framework, it is hoped that a consistent approach to scoping an ISCT can be adopted, supporting investment in ISCT by the industry, enabling consistent review of the ISCT approach across device disciplines by regulators, and providing maximum impact of modeling technologies in support of devices to improve patient outcomes.
Collapse
Affiliation(s)
| | - Jeff Bischoff
- Zimmer Biomet, 1800 West Center Street, Warsaw, IN 46580, USA
| |
Collapse
|
3
|
Favre P, Maquer G, Henderson A, Hertig D, Ciric D, Bischoff JE. In Silico Clinical Trials in the Orthopedic Device Industry: From Fantasy to Reality? Ann Biomed Eng 2021; 49:3213-3226. [PMID: 33973129 PMCID: PMC8110242 DOI: 10.1007/s10439-021-02787-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/24/2021] [Indexed: 11/24/2022]
Abstract
The orthopedic device industry relies heavily on clinical evaluation to confirm the safety, performance, and clinical benefits of its implants. Limited sample size often prevents these studies from capturing the full spectrum of patient variability and real-life implant use. The device industry is accustomed to simulating benchtop tests with numerical methods and recent developments now enable virtual "in silico clinical trials" (ISCT). In this article, we describe how the advancement of computer modeling has naturally led to ISCT; outline the potential benefits of ISCT to patients, healthcare systems, manufacturers, and regulators; and identify how hurdles associated with ISCT may be overcome. In particular, we highlight a process for defining the relevant patient risks to address with ISCT, the utility of a versatile software pipeline, the necessity to ensure model credibility, and the goal of limiting regulatory uncertainty. By complementing-not replacing-traditional clinical trials with computational evidence, ISCT provides a viable technical and regulatory strategy for characterizing the full spectrum of patients, clinical conditions, and configurations that are embodied in contemporary orthopedic implant systems.
Collapse
Affiliation(s)
| | - Ghislain Maquer
- Zimmer Biomet, Sulzerallee 8, 8404 , Winterthur, Switzerland
| | - Adam Henderson
- Zimmer Biomet, Sulzerallee 8, 8404 , Winterthur, Switzerland
| | - Daniel Hertig
- Zimmer Biomet, Sulzerallee 8, 8404 , Winterthur, Switzerland
| | - Daniel Ciric
- Zimmer Biomet, Sulzerallee 8, 8404 , Winterthur, Switzerland
| | | |
Collapse
|
4
|
Martelli S, Beck B, Saxby D, Lloyd D, Pivonka P, Taylor M. Modelling Human Locomotion to Inform Exercise Prescription for Osteoporosis. Curr Osteoporos Rep 2020; 18:301-311. [PMID: 32335858 PMCID: PMC7250953 DOI: 10.1007/s11914-020-00592-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We review the literature on hip fracture mechanics and models of hip strain during exercise to postulate the exercise regimen for best promoting hip strength. RECENT FINDINGS The superior neck is a common location for hip fracture and a relevant exercise target for osteoporosis. Current modelling studies showed that fast walking and stair ambulation, but not necessarily running, optimally load the femoral neck and therefore theoretically would mitigate the natural age-related bone decline, being easily integrated into routine daily activity. High intensity jumps and hopping have been shown to promote anabolic response by inducing high strain in the superior anterior neck. Multidirectional exercises may cause beneficial non-habitual strain patterns across the entire femoral neck. Resistance knee flexion and hip extension exercises can induce high strain in the superior neck when performed using maximal resistance loadings in the average population. Exercise can stimulate an anabolic response of the femoral neck either by causing higher than normal bone strain over the entire hip region or by causing bending of the neck and localized strain in the superior cortex. Digital technologies have enabled studying interdependences between anatomy, bone distribution, exercise, strain and metabolism and may soon enable personalized prescription of exercise for optimal hip strength.
Collapse
Affiliation(s)
- Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, 5042, Australia.
| | - Belinda Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
| | - David Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - David Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Pivonka
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology, Brisbane, Australia
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, 5042, Australia
| |
Collapse
|
5
|
Black RA, Houston G. 40th Anniversary Issue: Reflections on papers from the archive on "Rehabilitation Engineering". Med Eng Phys 2020; 72:72-73. [PMID: 31554580 DOI: 10.1016/j.medengphy.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Richard A Black
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK.
| | - Gregor Houston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
6
|
Al-Dirini RMA, Martelli S, O'Rourke D, Huff D, Zhang J, Clement JG, Besier T, Taylor M. Virtual trial to evaluate the robustness of cementless femoral stems to patient and surgical variation. J Biomech 2018; 82:346-356. [PMID: 30473137 DOI: 10.1016/j.jbiomech.2018.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
Abstract
Primary stability is essential for the success of cementless femoral stems. In this study, patient specific finite element (FE) models were used to assess changes in primary stability due to variability in patient anatomy, bone properties and stem alignment for two commonly used cementless femoral stems, Corail® and Summit® (DePuy Synthes, Warsaw, USA). Computed-tomography images of the femur were obtained for 8 males and 8 females. An automated algorithm was used to determine the stem position and size which minimized the endo-cortical space, and then span the plausible surgical envelope of implant positions constrained by the endo-cortical boundary. A total of 1952 models were generated and ran, each with a unique alignment scenario. Peak hip contact and muscle forces for stair climbing were scaled to the donor's body weight and applied to the model. The primary stability was assessed by comparing the implant micromotion and peri-prosthetic strains to thresholds (150 μm and 7000 µε, respectively) above which fibrous tissue differentiation and bone damage are expected to prevail. Despite the wide range of implant positions included, FE prediction were mostly below the thresholds (medians: Corail®: 20-74 µm and 1150-2884 µε, Summit®: 25-111 µm and 860-3010 µε), but sensitivity of micromotion and interfacial strains varied across femora, with the majority being sensitive (p < 0.0029) to average bone mineral density, cranio-caudal angle, post-implantation anteversion angle and lateral offset of the femur. The results confirm the relationship between implant position and primary stability was highly dependent on the patient and the stem design used.
Collapse
Affiliation(s)
- Rami M A Al-Dirini
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia.
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia
| | - Dermot O'Rourke
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia
| | - Daniel Huff
- DePuy Synthes, Johnson and Johnson, Warsaw, USA
| | - Ju Zhang
- Auckland Bioengineering Institute, Auckland University, Auckland, New Zealand
| | - John G Clement
- Melbourne Dental School, University of Melbourne, Melbourne, Australia
| | - Thor Besier
- Auckland Bioengineering Institute, Auckland University, Auckland, New Zealand
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia.
| |
Collapse
|
7
|
Al-Dirini RMA, Martelli S, Huff D, Zhang J, Clement JG, Besier T, Taylor M. Evaluating the primary stability of standard vs lateralised cementless femoral stems - A finite element study using a diverse patient cohort. Clin Biomech (Bristol, Avon) 2018; 59:101-109. [PMID: 30219523 DOI: 10.1016/j.clinbiomech.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Restoring the original femoral offset is desirable for total hip replacements as it preserves the original muscle lever arm and soft tissue tensions. This can be achieved through lateralised stems, however, the effect of variation in the hip centre offset on the primary stability remains unclear. METHODS Finite element analysis was used to compare the primary stability of lateralised and standard designs for a cementless femoral stem (Corail®) across a representative cohort of male and female femora (N = 31 femora; age from 50 to 80 years old). Each femur model was implanted with three designs of the Corail® stem, each designed to achieve a different degree of lateralisation. An automated algorithm was used to select the size and position that achieve maximum metaphyseal fit for each of the designs. Joint contact and muscle forces simulating the peak forces during level gait and stair climbing were scaled to the body mass of each subject. FINDINGS The study found that differences in restoring the native femoral offset introduce marginal differences in micromotion (differences in peak micromotion <21 μm), for most cases. Nonetheless, significant reduction in the interfacial strains (>3000 με) was achieved for some subjects when lateralized stems were used. INTERPRETATION Findings of this study suggest that, with the appropriate size and alignment, the standard offset design is likely to be sufficient for primary stability, in most cases. Nonetheless, appropriate use of lateralised stems has the potential reduce the risk of peri-prosthetic bone damage. This highlights the importance of appropriate implant selection during the surgical planning stage.
Collapse
Affiliation(s)
- Rami M A Al-Dirini
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia.
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia
| | - Daniel Huff
- DePuy Synthes, Johnson and Johnson, Warsaw, USA
| | - Ju Zhang
- Auckland Bioengineering Institute, The University Auckland, Auckland, New Zealand
| | - John G Clement
- Melbourne Dental School, The University of Melbourne, Melbourne, Australia
| | - Thor Besier
- Auckland Bioengineering Institute, The University Auckland, Auckland, New Zealand
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia.
| |
Collapse
|
8
|
Al-Dirini RMA, O'Rourke D, Huff D, Martelli S, Taylor M. Biomechanical Robustness of a Contemporary Cementless Stem to Surgical Variation in Stem Size and Position. J Biomech Eng 2018; 140:2677752. [DOI: 10.1115/1.4039824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 01/19/2023]
Abstract
Successful designs of total hip replacement (THR) need to be robust to surgical variation in sizing and positioning of the femoral stem. This study presents an automated method for comprehensive evaluation of the potential impact of surgical variability in sizing and positioning on the primary stability of a contemporary cementless femoral stem (Corail®, DePuy Synthes). A patient-specific finite element (FE) model of a femur was generated from computed tomography (CT) images from a female donor. An automated algorithm was developed to span the plausible surgical envelope of implant positions constrained by the inner cortical boundary. The analysis was performed on four stem sizes: oversized, ideal (nominal) sized, and undersized by up to two stem sizes. For each size, Latin hypercube sampling was used to generate models for 100 unique alignment scenarios. For each scenario, peak hip contact and muscle forces published for stair climbing were scaled to the donor's body weight and applied to the model. The risk of implant loosening was assessed by comparing the bone–implant micromotion/strains to thresholds (150 μm and 7000 με) above which fibrous tissue is expected to prevail and the periprosthetic bone to yield, respectively. The risk of long-term loosening due to adverse bone resorption was assessed using bone adaptation theory. The range of implant positions generated effectively spanned the available intracortical space. The Corail stem was found stable and robust to changes in size and position, with the majority of the bone–implant interface undergoing micromotion and interfacial strains that are well below 150 μm and 7000 με, respectively. Nevertheless, the range of implant positions generated caused an increase of up to 50% in peak micromotion and up to 25% in interfacial strains, particularly for retroverted stems placed in a medial position.
Collapse
Affiliation(s)
- Rami M. A. Al-Dirini
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia e-mail:
| | - Dermot O'Rourke
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia
| | - Daniel Huff
- DePuy Synthes, Johnson and Johnson, Warsaw, IN 46581
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5043, Australia e-mail:
| |
Collapse
|
9
|
Carlier A, Vasilevich A, Marechal M, de Boer J, Geris L. In silico clinical trials for pediatric orphan diseases. Sci Rep 2018; 8:2465. [PMID: 29410461 PMCID: PMC5802824 DOI: 10.1038/s41598-018-20737-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
To date poor treatment options are available for patients with congenital pseudarthrosis of the tibia (CPT), a pediatric orphan disease. In this study we have performed an in silico clinical trial on 200 virtual subjects, generated from a previously established model of murine bone regeneration, to tackle the challenges associated with the small, pediatric patient population. Each virtual subject was simulated to receive no treatment and bone morphogenetic protein (BMP) treatment. We have shown that the degree of severity of CPT is significantly reduced with BMP treatment, although the effect is highly subject-specific. Using machine learning techniques we were also able to stratify the virtual subject population in adverse responders, non-responders, responders and asymptomatic. In summary, this study shows the potential of in silico medicine technologies as well as their implications for other orphan diseases.
Collapse
Affiliation(s)
- A Carlier
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C, PB 2419, 3000 Leuven, Belgium and Biomechanics Research Unit, University of Liège, Chemin des Chevreuils 1 - BAT 52/3, 4000, Liège 1, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, PB 813, 3000, Leuven, Belgium.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - A Vasilevich
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - M Marechal
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, PB 813, 3000, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - J de Boer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - L Geris
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C, PB 2419, 3000 Leuven, Belgium and Biomechanics Research Unit, University of Liège, Chemin des Chevreuils 1 - BAT 52/3, 4000, Liège 1, Belgium. .,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, PB 813, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J Biomech 2014; 48:767-78. [PMID: 25560273 DOI: 10.1016/j.jbiomech.2014.12.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/23/2022]
Abstract
Finite element has been used for more than four decades to study and evaluate the mechanical behaviour total joint replacements. In Huiskes seminal paper "Failed innovation in total hip replacement: diagnosis and proposals for a cure", finite element modelling was one of the potential cures to avoid poorly performing designs reaching the market place. The size and sophistication of models has increased significantly since that paper and a range of techniques are available from predicting the initial mechanical environment through to advanced adaptive simulations including bone adaptation, tissue differentiation, damage accumulation and wear. However, are we any closer to FE becoming an effective screening tool for new devices? This review contains a critical analysis of currently available finite element modelling techniques including (i) development of the basic model, the application of appropriate material properties, loading and boundary conditions, (ii) describing the initial mechanical environment of the bone-implant system, (iii) capturing the time dependent behaviour in adaptive simulations, (iv) the design and implementation of computer based experiments and (v) determining suitable performance metrics. The development of the underlying tools and techniques appears to have plateaued and further advances appear to be limited either by a lack of data to populate the models or the need to better understand the fundamentals of the mechanical and biological processes. There has been progress in the design of computer based experiments. Historically, FE has been used in a similar way to in vitro tests, by running only a limited set of analyses, typically of a single bone segment or joint under idealised conditions. The power of finite element is the ability to run multiple simulations and explore the performance of a device under a variety of conditions. There has been increasing usage of design of experiments, probabilistic techniques and more recently population based modelling to account for patient and surgical variability. In order to have effective screening methods, we need to continue to develop these approaches to examine the behaviour and performance of total joint replacements and benchmark them for devices with known clinical performance. Finite element will increasingly be used in the design, development and pre-clinical testing of total joint replacements. However, simulations must include holistic, closely corroborated, multi-domain analyses which account for real world variability.
Collapse
|
11
|
Geris L. Regenerative orthopaedics: in vitro, in vivo...in silico. INTERNATIONAL ORTHOPAEDICS 2014; 38:1771-8. [PMID: 24984594 DOI: 10.1007/s00264-014-2419-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022]
Abstract
In silico, defined in analogy to in vitro and in vivo as those studies that are performed on a computer, is an essential step in problem-solving and product development in classical engineering fields. The use of in silico models is now slowly easing its way into medicine. In silico models are already used in orthopaedics for the planning of complicated surgeries, personalised implant design and the analysis of gait measurements. However, these in silico models often lack the simulation of the response of the biological system over time. In silico models focusing on the response of the biological systems are in full development. This review starts with an introduction into in silico models of orthopaedic processes. Special attention is paid to the classification of models according to their spatiotemporal scale (gene/protein to population) and the information they were built on (data vs hypotheses). Subsequently, the review focuses on the in silico models used in regenerative orthopaedics research. Contributions of in silico models to an enhanced understanding and optimisation of four key elements-cells, carriers, culture and clinics-are illustrated. Finally, a number of challenges are identified, related to the computational aspects but also to the integration of in silico tools into clinical practice.
Collapse
Affiliation(s)
- Liesbet Geris
- Biomechanics Research Unit, University of Liège, Liège, Belgium,
| |
Collapse
|
12
|
Rao C, Fitzpatrick CK, Rullkoetter PJ, Maletsky LP, Kim RH, Laz PJ. A statistical finite element model of the knee accounting for shape and alignment variability. Med Eng Phys 2013; 35:1450-6. [DOI: 10.1016/j.medengphy.2013.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/11/2012] [Accepted: 03/29/2013] [Indexed: 10/26/2022]
|
13
|
Epasto G, Foti A, Guglielmino E, Rosa MA. Total hip arthroplasty by using a cementless ultrashort stem: A subject-specific finite element analysis for a young patient clinical case. Proc Inst Mech Eng H 2013; 227:757-66. [DOI: 10.1177/0954411913482267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this article, a subject-specific finite element analysis has been developed to study a clinical case of a surgically misaligned hip prosthesis with an ultrashort stem. It was set out to study the strain energy density pattern, comparing the results obtained with computed tomography images. The authors developed two other numerical models: the first one analyzes the stress and strain distributions in the healthy femur (without prosthesis) and the second one analyzes the same boneimplant biomechanical system of the clinical case but assuming the prosthesis in the proper position. The misaligned prosthesis produced an overload at the proximal posterior plane of the femur, as confirmed by computed tomography images, which detect the formation of new bone. The numerical model of the correctly positioned prosthesis demonstrated that the bone is not overloaded and that the position of neutral axis does not significantly shift from the physiological condition.
Collapse
Affiliation(s)
- Gabriella Epasto
- Department of Electronic Engineering, Chemistry and Industrial Engineering, University of Messina, Messina, Italy
| | - Albina Foti
- Department of Special Surgery, Division of Traumatology and Orthopedics, University of Messina, Messina, Italy
| | - Eugenio Guglielmino
- Department of Electronic Engineering, Chemistry and Industrial Engineering, University of Messina, Messina, Italy
| | - Michele A Rosa
- Department of Special Surgery, Division of Traumatology and Orthopedics, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Taylor M, Bryan R, Galloway F. Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:273-292. [PMID: 23255372 DOI: 10.1002/cnm.2530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
It is becoming increasingly difficult to differentiate the performance of new joint replacement designs using available preclinical test methods. Finite element analysis is commonly used and the majority of published studies are performed on representative anatomy, assuming optimal implant placement, subjected to idealised loading conditions. There are significant differences between patients and accounting for this variability will lead to better assessment of the risk of failure. This review paper provides a comprehensive overview of the techniques available to account for patient variability. There is a brief overview of patient-specific model generation techniques, followed by a review of multisubject patient-specific studies performed on the intact and implanted femur and tibia. In particular, the challenges and limitations of manually generating models for such studies are discussed. To efficiently account for patient variability, the application of statistical shape and intensity models (SSIM) are being developed. Such models have the potential to synthetically generate thousands of representative models generated from a much smaller training set. Combined with the automation of the prosthesis implantation process, SSIM provides a potentially powerful tool for assessing the next generation of implant designs. The potential application of SSIM are discussed along with their limitations.
Collapse
Affiliation(s)
- Mark Taylor
- Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia.
| | | | | |
Collapse
|
15
|
Dall'Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 2013; 52:27-38. [PMID: 22985891 DOI: 10.1016/j.bone.2012.09.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Femoral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. Quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) models have been proved to be more accurate predictors of femoral strength than BMD by adding geometrical and material properties. The aim of this study was to evaluate the ability of hvFE models in predicting femoral stiffness, strength and failure location for a large number of pairs of human femora tested in two different loading scenarios. METHODS Thirty-six pairs of femora were scanned with QCT and total proximal BMD and BMC were evaluated. For each pair, one femur was positioned in one-legged stance configuration (STANCE) and the other in a sideways configuration (SIDE). Nonlinear hvFE models were generated from QCT images by reproducing the same loading configurations imposed in the experiments. For experiments and models, the structural properties (stiffness and ultimate load), the failure location and the motion of the femoral head were computed and compared. RESULTS In both configurations, hvFE models predicted both stiffness (R(2)=0.82 for STANCE and R(2)=0.74 for SIDE) and femoral ultimate load (R(2)=0.80 for STANCE and R(2)=0.85 for SIDE) better than BMD and BMC. Moreover, the models predicted qualitatively well the failure location (66% of cases) and the motion of the femoral head. CONCLUSIONS The subject specific QCT-based nonlinear hvFE model cannot only predict femoral apparent mechanical properties better than densitometric measures, but can additionally provide useful qualitative information about failure location.
Collapse
Affiliation(s)
- E Dall'Ara
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Austria.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Surgeons undertaking total hip arthroplasty (THA) routinely perform a distal femoral neck resection. It has been argued that retaining the femoral neck during THA can provide mechanical and biological advantages. PURPOSES The objectives of this study were to review: (1) the current evidence on the advantages of femoral neck preservation during THA and (2) the clinical and radiological outcome of neck-preserving femoral stems. METHODS A search of the English-language literature on neck-preserving THA and on the individual neck-preserving implants was performed using PubMed, Ovid SP and Science Direct. RESULTS Studies have indicated that neck preservation offers superior tri-planar implant stability and allows more accurate restoration of the hip geometry and biomechanics. The trend towards tissue sparing surgery has contributed to the development of bone-conserving short-stem implants that offer variable levels of neck preservation. Despite an initial learning curve, these implants have generated promising early clinical results, with low revision rates and high outcome scores. However, radiological evaluation of some neck-preserving implants has detected a characteristic pattern of proximal femoral bone loss with distal cortical hypertrophy. The long-term implications of this finding are not yet known. CONCLUSIONS Preserving the femoral neck during THA has biomechanical advantages. However, long-term outcome data are needed on neck-preserving femoral stems to evaluate on-going bone remodelling and assess implant performance and survival.
Collapse
Affiliation(s)
| | - Richard E. Field
- The South West London Elective Orthopaedic Centre, Dorking Road, Epsom, Surrey KT18 7EG UK
| |
Collapse
|