1
|
Gao Y, He X, Xu W, Deng Y, Xia Z, Chen J, He Y. Three-dimensional finite element analysis of the biomechanical properties of different material implants for replacing missing teeth. Odontology 2025; 113:80-88. [PMID: 38717525 DOI: 10.1007/s10266-024-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/17/2024] [Indexed: 01/11/2025]
Abstract
The purpose of this study was to analyze the biomechanical properties of implants made of different materials to replace missing teeth by using three-dimensional finite element analysis and provide a theoretic basis for clinical application. CBCT data was imported into the Mimics and 3-Matic to construct the three-dimensional finite element model of a missing tooth restored by an implant. Then, the model was imported into the Marc Mentat. Based on the variations of the implant materials (titanium, titanium-zirconia, zirconia and poly (ether-ether-ketone) (PEEK)) and bone densities (high and low), a total of eight models were created. An axial load of 150 N was applied to the crown of the implant to simulate the actual occlusal situation. Both the maximum values of stresses in the cortical bone and implant were observed in the Zr-low model. The maximum displacements of the implants were also within the normal range except for the PEEK models. The cancellous bone strains were mainly distributed in the apical area of the implant, and the maximum value (3225 μstrain) was found in PEEK-low model. Under the premise of the same implant material, the relevant data from various indices in low-density bone models were larger than that in high-density bone models. From the biomechanical point of view, zirconia, titanium and titanium-zirconia were all acceptable implant materials for replacing missing teeth and possessed excellent mechanical properties, while the application of PEEK material needs to be further optimized and modified.
Collapse
Affiliation(s)
- Yichen Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xianyi He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuyao Deng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhaoxin Xia
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Junliang Chen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yun He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Vautrin A, Thierrin R, Wili P, Voumard B, Klingler S, Chappuis V, Varga P, Zysset P. Homogenized finite element simulations can predict the primary stability of dental implants in human jawbone. J Mech Behav Biomed Mater 2024; 158:106688. [PMID: 39153410 DOI: 10.1016/j.jmbbm.2024.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Adequate primary stability is a pre-requisite for the osseointegration and long-term success of dental implants. Primary stability depends essentially on the bone mechanical integrity at the implantation site. Clinically, a qualitative evaluation can be made on medical images, but finite element (FE) simulations can assess the primary stability of a bone-implant construct quantitatively based on high-resolution CT images. However, FE models lack experimental validation on clinically relevant bone anatomy. The aim of this study is to validate such an FE model on human jawbones. Forty-seven bone biopsies were extracted from human cadaveric jawbones. Dental implants of two sizes (Ø3.5 mm and Ø4.0 mm) were inserted and the constructs were subjected to a quasi-static bending-compression loading protocol. Those mechanical tests were replicated with sample-specific non-linear homogenized FE models. Bone was modeled with an elastoplastic constitutive law that included damage. Density-based material properties were mapped based on μCT images of the bone samples. The experimental ultimate load was better predicted by FE (R2 = 0.83) than by peri-implant bone density (R2 = 0.54). Unlike bone density, the simulations were also able to capture the effect of implant diameter. The primary stability of a dental implant in human jawbones can be predicted quantitatively with FE simulations. This method may be used for improving the design and insertion protocols of dental implants.
Collapse
Affiliation(s)
- Antoine Vautrin
- AO Research Institute Davos, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Raphaël Thierrin
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Patrik Wili
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Benjamin Voumard
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Samuel Klingler
- School of Dental Medicine, Department of Oral Surgery and Stomatology, University of Bern, Bern, Switzerland
| | - Vivianne Chappuis
- School of Dental Medicine, Department of Oral Surgery and Stomatology, University of Bern, Bern, Switzerland
| | | | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Akbas O, Greuling A, Stiesch M. The effects of different grading approaches in additively manufactured dental implants on peri-implant bone stress: A finite element analysis. J Mech Behav Biomed Mater 2024; 154:106530. [PMID: 38552334 DOI: 10.1016/j.jmbbm.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Additive manufacturing enables local grading of the stiffness of dental implants through targeted adjustment of the manufacturing parameters to meet patient specific requirements. The extent to which such a manufacturing approach affects the interaction between the implant body and the surrounding bone, and what grading is optimal, is currently insufficiently investigated. This study investigates the effect of different Young's modulus grading approaches on stresses in the peri-implant bone via finite element analysis. The implant geometry was kept constant and in the case of the implant a node-dependent elastic modulus was assigned. In this way, a vertical, a radial and three torus based grading approaches were created and examined. A load was then applied directly to the occlusal surface of the implant crown. It was found that a local grading utilizing a torus shape was most favourable in terms of an effective stress peak reduction. The best torus shape tested achieved a 22 % reduction of maximum principal stress and 6 % reduction of minimum principal stress compared to the uniform material. In clinical settings, this may provide benefits in situations of overload. Based on the results, a graded stiffness in dental implants appears to be of interest for developing advanced, patient-specific implant solutions.
Collapse
Affiliation(s)
- Osman Akbas
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Abdoli Z, Mohammadi B, Karimi HR. On the fatigue life of dental implants: Numerical and experimental investigation on configuration effect. Med Eng Phys 2024; 123:104078. [PMID: 38365331 DOI: 10.1016/j.medengphy.2023.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 11/10/2023] [Accepted: 12/03/2023] [Indexed: 02/18/2024]
Abstract
Dental implants have seen widespread and successful use in recent years. Given their long-term application and the critical role of geometry in determining fracture and fatigue characteristics, fatigue assessments are of utmost importance for implant systems. In this study, nine dental implant system samples were subjected to testing in accordance with ISO 14801 standards. The tests included static evaluations to assess ultimate loads and fatigue tests conducted under loads of 270 N and 230 N at a frequency of 15 Hz, aimed at identifying fatigue failure locations and fatigue life. Fatigue life predictions and related calculations were carried out using Fe-safe software. The initial model featured a 22° angle for both the fixture and abutment. Subsequently, variations in abutment angles at 21° and 23° were considered while keeping the fixture angle at 22°. In the next phase, the fixture and abutment angles were set as identical, at 21° and 23°. The results unveiled that when the angles of the abutment and fixture matched, stress values decreased, and fatigue life increased. Conversely, models featuring abutment angles of 21° and 23°, with a 22° angle for the fixture, led to a 49.1 % increase in stress and a 36.9 % decrease in fatigue life compared to the primary model. Notably, in the case of the implant with a 23° angle for both abutment and fixture, the fatigue life reached its highest value at 10 million cycles. Conversely, the worst-case scenario was observed in the implant with a 21° abutment angle and a 23° fixture angle, with a fatigue life of 5.49 million cycles.
Collapse
Affiliation(s)
- Zahrae Abdoli
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Bijan Mohammadi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Hamid Reza Karimi
- School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
5
|
Hosseini-Faradonbeh SA, Katoozian HR. Biomechanical evaluations of the long-term stability of dental implant using finite element modeling method: a systematic review. J Adv Prosthodont 2022; 14:182-202. [PMID: 35855319 PMCID: PMC9259347 DOI: 10.4047/jap.2022.14.3.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The aim of this study is to summarize various biomechanical aspects in evaluating the long-term stability of dental implants based on finite element method (FEM). MATERIALS AND METHODS A comprehensive search was performed among published studies over the last 20 years in three databases; PubMed, Scopus, and Google Scholar. The studies are arranged in a comparative table based on their publication date. Also, the variety of modeling is shown in the form of graphs and tables. Various aspects of the studies conducted were discussed here. RESULTS By reviewing the titles and abstracts, 9 main categories were extracted and discussed as follows: implant materials, the focus of the study on bone or implant as well as the interface area, type of loading, element shape, parts of the model, boundary conditions, failure criteria, statistical analysis, and experimental tests performed to validate the results. It was found that most of the studied articles contain a model of the jaw bone (cortical and cancellous bone). The material properties were generally derived from the literature. Approximately 43% of the studies attempted to examine the implant and surrounding bone simultaneously. Almost 42% of the studies performed experimental tests to validate the modeling. CONCLUSION Based on the results of the studies reviewed, there is no "optimal" design guideline, but more reliable design of implant is possible. This review study can be a starting point for more detailed investigations of dental implant longevity.
Collapse
Affiliation(s)
| | - Hamid Reza Katoozian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
6
|
Effect of different implant configurations on biomechanical behavior of full-arch implant-supported mandibular monolithic zirconia fixed prostheses. J Mech Behav Biomed Mater 2019; 102:103490. [PMID: 31877512 DOI: 10.1016/j.jmbbm.2019.103490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
Mechanical failure of zirconia-based full-arch implant-supported fixed dental prostheses (FAFDPs) remains a critical issue in prosthetic dentistry. The option of full-arch implant treatment and the biomechanical behaviour within a sophisticated screw-retained prosthetic structure have stimulated considerable interest in fundamental and clinical research. This study aimed to analyse the biomechanical responses of zirconia-based FAFDPs with different implant configurations (numbers and distributions), thereby predicting the possible failure sites and the optimum configuration from biomechanical aspect by using finite element method (FEM). Five 3D finite element (FE) models were constructed with patient-specific heterogeneous material properties of mandibular bone. The results were reported using volume-averaged von-Mises stresses (σVMVA) to eliminate numerical singularities. It was found that wider placement of multi-unit copings was preferred as it reduces the cantilever effect on denture. Within the limited areas of implant insertion, the adoption of angled multi-unit abutments allowed the insertion of oblique implants in the bone and wider distribution of the multi-unit copings in the prosthesis, leading to lower stress concentration on both mandibular bone and prosthetic components. Increasing the number of supporting implants in a FAFDPs reduced loading on each implant, although it may not necessarily reduce the stress concentration in the most posterior locations significantly. Overall, the 6-implant configuration was a preferable configuration as it provided the most balanced mechanical performance in this patient-specific case.
Collapse
|
7
|
Tahir AM, Jilich M, Trinh DC, Cannata G, Barberis F, Zoppi M. Architecture and design of a robotic mastication simulator for interactive load testing of dental implants and the mandible. J Prosthet Dent 2019; 122:389.e1-389.e8. [PMID: 31547954 DOI: 10.1016/j.prosdent.2019.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
STATEMENT OF PROBLEM Determination of interactive loading between a dental prosthesis and the host mandible is essential for implant prosthodontics and to preserve bone. PURPOSE The purpose of this study was to develop and evaluate a robotic mastication simulator to replicate the human mastication force cycle to record the required interactive loading using specifically designed force sensors. MATERIAL AND METHODS This robotic mastication simulator incorporated a Stewart parallel kinematic mechanism (PKM) controlled in the force-control loop. The hydraulically operated PKM executed the wrench operation, which consisted of the combined effect of forces and moments exhibited by the mastication process. Principal design features of this robotic simulator included PKM kinematic modeling, static force analysis to realize the masticatory wrench characteristics, and the architecture of its hydraulic system. Additionally, the design of a load-sensing element for the mandible and implant interaction was also incorporated. This element facilitated the quantification of the load distribution between implants and the host bone during the masticatory operation produced by the PKM. These loading tests were patient-specific and required separate artificial mandibular models for each patient. RESULTS The simulation results demonstrated that the robotic PKM could replicate human mastication. These results validated the hydraulic system modeling for the required range of masticatory movements and effective forces of the PKM end-effector. The overall structural design of the robotic mastication simulator presented the integration of the PKM and its hydraulic system with the premeditated load-recording mechanism. CONCLUSIONS The developed system facilitated the teeth-replacement procedure. The PKM accomplished the execution of mastication cycle involving 6 degrees of freedom, enabling any translation and rotation in sagittal, horizontal, and vertical planes. The mechanism can simulate the human mastication cycle and has a force application range of up to 2000 N. The designed load-sensing element can record interactive forces within the range of 200 N to 2000 N with fast response and high sensitivity to produce a robotic mastication simulator with custom-made modules.
Collapse
Affiliation(s)
- Ahmad Mahmood Tahir
- Research Scientist, Mechanics, Measurements and Robotics (MMR), DIME-PMAR Robotics Group, University of Genoa, Genoa, Italy.
| | - Michal Jilich
- Research Scientist, DIME-PMAR Robotics Group, University of Genoa, Genoa, Italy
| | - Duc Cuong Trinh
- Research Scientist, DIME-PMAR Robotics Group, University of Genoa, Genoa, Italy
| | - Giorgio Cannata
- Associate Professor, The Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Fabrizio Barberis
- Associate Professor, The Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
| | - Matteo Zoppi
- Associate Professor, DIME-PMAR Robotics Group, University of Genoa, Genova, Italy
| |
Collapse
|
8
|
Dhatrak P, Girme V, Shirsat U, Sumanth S, Deshmukh V. Significance of Orthotropic Material Models to Predict Stress Around Bone-Implant Interface Using Numerical Simulation. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00649-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Removal torque and force to failure of non-axially tightened implant abutment screws. J Prosthet Dent 2019; 121:322-326. [DOI: 10.1016/j.prosdent.2018.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/21/2022]
|
10
|
Chang Y, Tambe AA, Maeda Y, Wada M, Gonda T. Finite element analysis of dental implants with validation: to what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a validation process. Int J Implant Dent 2018. [PMID: 29516219 PMCID: PMC5842167 DOI: 10.1186/s40729-018-0119-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A literature review of finite element analysis (FEA) studies of dental implants with their model validation process was performed to establish the criteria for evaluating validation methods with respect to their similarity to biological behavior. An electronic literature search of PubMed was conducted up to January 2017 using the Medical Subject Headings “dental implants” and “finite element analysis.” After accessing the full texts, the context of each article was searched using the words “valid” and “validation” and articles in which these words appeared were read to determine whether they met the inclusion criteria for the review. Of 601 articles published from 1997 to 2016, 48 that met the eligibility criteria were selected. The articles were categorized according to their validation method as follows: in vivo experiments in humans (n = 1) and other animals (n = 3), model experiments (n = 32), others’ clinical data and past literature (n = 9), and other software (n = 2). Validation techniques with a high level of sufficiency and efficiency are still rare in FEA studies of dental implants. High-level validation, especially using in vivo experiments tied to an accurate finite element method, needs to become an established part of FEA studies. The recognition of a validation process should be considered when judging the practicality of an FEA study.
Collapse
Affiliation(s)
- Yuanhan Chang
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Abhijit Anil Tambe
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Mumbai Agra Road, Panchwati, Nashik, Maharashtra, India
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Wada
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoya Gonda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Rand A, Stiesch M, Eisenburger M, Greuling A. The effect of direct and indirect force transmission on peri-implant bone stress - a contact finite element analysis. Comput Methods Biomech Biomed Engin 2017. [PMID: 28622020 DOI: 10.1080/10255842.2017.1338691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In almost all finite element (FE) studies in dentistry, virtual forces are applied directly to dentures. The purpose of this study was to develop a FE model with non-linear contact simulation using an antagonist as force transmitter and to compare this with a similar model that uses direct force transmission. Furthermore, five contact situations were created in order to examine their influence on the peri-implant bone stresses, which are relevant to the survival rate of implants. It was found that the peri-implant bone stresses were strongly influenced by the kind of force transmission and contact number.
Collapse
Affiliation(s)
- Annike Rand
- a Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Hannover , Germany
| | - Meike Stiesch
- a Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Hannover , Germany
| | - Michael Eisenburger
- a Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Hannover , Germany
| | - Andreas Greuling
- a Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Hannover , Germany
| |
Collapse
|
12
|
He Y, Hasan I, Keilig L, Chen J, Pan Q, Huang Y, Bourauel C. Combined implant-residual tooth supported prosthesis after tooth hemisection: A finite element analysis. Ann Anat 2016; 206:96-103. [PMID: 26851558 DOI: 10.1016/j.aanat.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/25/2015] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
Tooth hemisection preserves partial tooth structure and reduces the resorption of alveolar bone. The aim of this study was to analyze the feasibility of preserving a molar after hemisection and inserting a dental implant with different prosthetic superstructures by means of finite element analysis. First, the distance between the root of the mandibular second premolar and the distal root of the first molar were measured in 80 cone beam computed tomography (CBCT) data sets. Based on these data, the lower right posterior jaw segment was reconstructed and the geometries of the appropriate implant were imported. Four models were created: (1) Hemi-1: An implant (3.7×9mm) replaced the mesial root of the molar, and a single crown was placed on the implant and residual tooth. (2) Hemi-2: Two separate crowns were generated for the implant and the residual tooth. (3) Single: An implant (5.5×9mm) with crown replaced the whole molar. (4) FPD: A 3-unit fixed partial denture combined the distal residual part of the molar and premolar. The results indicated that stresses in the cortical bone and strains in the majority region of the spongious bone were below the physiological upper limits. There were higher stresses in implant with the Hemi-1 and Single models, which had the same maximum values of 45.0MPa. The FPD models represented the higher values of stresses in the teeth and strains in PDL compared to other models. From a biomechanical point of view, it can be concluded that a combination of an implant and residual molar after tooth hemisection is an acceptable treatment option.
Collapse
Affiliation(s)
- Yun He
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, Jianyangnanlu 2, Luzhou 646000, China; Endowed Chair of Oral Technology, Rheinische Friedrich-Wilhelms University, Welschnonnenstr. 17, Bonn 53111, Germany
| | - Istabrak Hasan
- Endowed Chair of Oral Technology, Rheinische Friedrich-Wilhelms University, Welschnonnenstr. 17, Bonn 53111, Germany; Department of Prosthetic Dentistry, Preclinical Education and Materials Science, Dental School, Rheinische Friedrich-Wilhelms University, Welschnonnenstr. 17, 53111 Bonn, Germany.
| | - Ludger Keilig
- Endowed Chair of Oral Technology, Rheinische Friedrich-Wilhelms University, Welschnonnenstr. 17, Bonn 53111, Germany; Department of Prosthetic Dentistry, Preclinical Education and Materials Science, Dental School, Rheinische Friedrich-Wilhelms University, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Junliang Chen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, Jianyangnanlu 2, Luzhou 646000, China
| | - Qing Pan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, Jianyangnanlu 2, Luzhou 646000, China
| | - Yue Huang
- Department of Orthodontics, Hospital of Stomatology, Luzhou Medical College, Jianyangnanlu 2, Luzhou 646000, China
| | - Christoph Bourauel
- Endowed Chair of Oral Technology, Rheinische Friedrich-Wilhelms University, Welschnonnenstr. 17, Bonn 53111, Germany
| |
Collapse
|
13
|
Behnaz E, Ramin M, Abbasi S, Pouya MA, Mahmood F. The effect of implant angulation and splinting on stress distribution in implant body and supporting bone: A finite element analysis. Eur J Dent 2015; 9:311-318. [PMID: 26430356 PMCID: PMC4569979 DOI: 10.4103/1305-7456.163235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: The aim of this study was to investigate the influence of implant crown splinting and the use of angulated abutment on stress distribution in implant body and surrounding bone by three-dimensional finite element analysis. Materials and Methods: For this study, three models with two implants at the site of mandibular right second premolar and first molar were designed (1): Both implants, parallel to adjacent teeth, with straight abutments (2): Anterior implant with 15 mesial angulations and posterior implant were placed parallel to adjacent tooth, (3): Both implants with 15 mesial angulations and parallel to each other with 15° angulated abutments. Restorations were modeled in two shapes (splinted and nonsplinted). Loading in tripod manner as each point 50 N and totally 300 N was applied. Stress distribution in relation to splinting or nonsplinting restorations and angulations was done with ABAQUS6.13. Results: Splinting the restorations in all situations, led to lower stresses in all implant bodies, cortical bone and spongy bone except for the spongy bone around angulated first molar. Angulated implant in nonsplinted restoration cause lower stresses in implant body and bone but in splinted models more stresses were seen in implant body in comparison with straight abutment (model 2). Stresses in nonsplinted and splinted restorations in cortical bone of angulated molar region were more than what was observed in straight molar implant (model 3). Conclusion: Implant restorations splinting lead to a better distribution of stresses in implant bodies and bone in comparison with nonsplinted restorations, especially when the load is applied off center to implant body. Angulations of implant can reduce stresses when the application of the load is in the same direction as the implant angulation.
Collapse
Affiliation(s)
- Ebadian Behnaz
- Dental Implant Research Center, Department of Prosthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mosharraf Ramin
- Dental Materialt Research Center and Department of Prosthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Abbasi
- Department of prosthodontics, School of Dentistry, Hamadan University of Medical Science, Hamadan, Iran
| | | | - Farzin Mahmood
- Department of Mechanical Engineering, Isfahan University, Isfahan, Iran
| |
Collapse
|
14
|
Effect of microthread design of dental implants on stress and strain patterns: a three-dimensional finite element analysis. ACTA ACUST UNITED AC 2013; 58:457-67. [DOI: 10.1515/bmt-2012-0108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 08/13/2013] [Indexed: 11/15/2022]
|
15
|
Tian K, Chen J, Han L, Yang J, Huang W, Wu D. Angled abutments result in increased or decreased stress on surrounding bone of single-unit dental implants: A finite element analysis. Med Eng Phys 2012; 34:1526-31. [DOI: 10.1016/j.medengphy.2012.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/26/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
|