3
|
Noamani A, Vette AH, Preuss R, Popovic MR, Rouhani H. Optimal Estimation of Anthropometric Parameters for Quantifying Multisegment Trunk Kinetics. J Biomech Eng 2018; 140:2681897. [DOI: 10.1115/1.4040247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 11/08/2022]
Abstract
Kinetics assessment of the human head-arms-trunk (HAT) complex via a multisegment model is a useful tool for objective clinical evaluation of several pathological conditions. Inaccuracies in body segment parameters (BSPs) are a major source of uncertainty in the estimation of the joint moments associated with the multisegment HAT. Given the large intersubject variability, there is currently no comprehensive database for the estimation of BSPs for the HAT. We propose a nonlinear, multistep, optimization-based, noninvasive method for estimating individual-specific BSPs and calculating joint moments in a multisegment HAT model. Eleven nondisabled individuals participated in a trunk-bending experiment and their body motion was recorded using cameras and a force plate. A seven-segment model of the HAT was reconstructed for each participant. An initial guess of the BSPs was obtained by individual-specific scaling of the BSPs calculated from the male visible human (MVH) images. The intersegmental moments were calculated using both bottom-up and top-down inverse dynamics approaches. Our proposed method adjusted the scaled BSPs and center of pressure (COP) offsets to estimate optimal individual-specific BSPs that minimize the difference between the moments obtained by top-down and bottom-up inverse dynamics approaches. Our results indicate that the proposed method reduced the error in the net joint moment estimation (defined as the difference between the net joint moment calculated via bottom-up and top-down approaches) by 79.3% (median among participants). Our proposed method enables an optimized estimation of individual-specific BSPs and, consequently, a less erroneous assessment of the three-dimensional (3D) kinetics of a multisegment HAT model.
Collapse
Affiliation(s)
- Alireza Noamani
- Department of Mechanical Engineering, University of Alberta, Edmonton T6G 1H9, AB, Canada e-mail:
| | - Albert H. Vette
- Department of Mechanical Engineering, University of Alberta, Edmonton T6G 1H9, AB, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 111 Avenue NW, Edmonton T5G 0B7, AB, Canada e-mail:
| | - Richard Preuss
- School of Physical & Occupational Therapy, McGill University, Montreal H3G 1Y5, QC, Canada e-mail:
| | - Milos R. Popovic
- Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute–University Health Network, Toronto M4G 3V9, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada e-mail:
| | - Hossein Rouhani
- Department of Mechanical Engineering, University of Alberta, Edmonton T6G 1H9, AB, Canada e-mail:
| |
Collapse
|
8
|
Mahallati S, Rouhani H, Preuss R, Masani K, Popovic MR. Multisegment Kinematics of the Spinal Column: Soft Tissue Artifacts Assessment. J Biomech Eng 2016; 138:2521876. [DOI: 10.1115/1.4033545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/08/2022]
Abstract
A major challenge in the assessment of intersegmental spinal column angles during trunk motion is the inherent error in recording the movement of bony anatomical landmarks caused by soft tissue artifacts (STAs). This study aims to perform an uncertainty analysis and estimate the typical errors induced by STA into the intersegmental angles of a multisegment spinal column model during trunk bending in different directions by modeling the relative displacement between skin-mounted markers and actual bony landmarks during trunk bending. First, we modeled the maximum displacement of markers relative to the bony landmarks with a multivariate Gaussian distribution. In order to estimate the distribution parameters, we measured these relative displacements on five subjects at maximum trunk bending posture. Then, in order to model the error depending on trunk bending angle, we assumed that the error grows linearly as a function of the bending angle. Second, we applied our error model to the trunk motion measurement of 11 subjects to estimate the corrected trajectories of the bony landmarks and investigate the errors induced into the intersegmental angles of a multisegment spinal column model. For this purpose, the trunk was modeled as a seven-segment rigid-body system described using 23 reflective markers placed on various bony landmarks of the spinal column. Eleven seated subjects performed trunk bending in five directions and the three-dimensional (3D) intersegmental angles during trunk bending were calculated before and after error correction. While STA minimally affected the intersegmental angles in the sagittal plane (<16%), it considerably corrupted the intersegmental angles in the coronal (error ranged from 59% to 551%) and transverse (up to 161%) planes. Therefore, we recommend using the proposed error suppression technique for STA-induced error compensation as a tool to achieve more accurate spinal column kinematics measurements. Particularly, for intersegmental rotations in the coronal and transverse planes that have small range and are highly sensitive to measurement errors, the proposed technique makes the measurement more appropriate for use in clinical decision-making processes.
Collapse
Affiliation(s)
- Sara Mahallati
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute—University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada e-mail:
| | - Hossein Rouhani
- Department of Mechanical Engineering, 10-368 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Richard Preuss
- School of Physical and Occupational Therapy, McGill University, 3630 Promenade Sir-William-Osler, Montreal, QC H3G 1Y5, Canada; The Constance Lethbridge Rehabilitation Centre site of the Centre de Recherche Interdisciplinaire en Réadaptation (CRIR), 7005 Boulevard de Maisonneuve Ouest, Montreal, QC H4B 1T3, Canada
| | - Kei Masani
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute—University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada
| | - Milos R. Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute—University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada
| |
Collapse
|
9
|
Ho CH, Triolo RJ, Elias AL, Kilgore KL, DiMarco AF, Bogie K, Vette AH, Audu ML, Kobetic R, Chang SR, Chan KM, Dukelow S, Bourbeau DJ, Brose SW, Gustafson KJ, Kiss ZHT, Mushahwar VK. Functional electrical stimulation and spinal cord injury. Phys Med Rehabil Clin N Am 2015; 25:631-54, ix. [PMID: 25064792 DOI: 10.1016/j.pmr.2014.05.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.
Collapse
Affiliation(s)
- Chester H Ho
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada.
| | - Ronald J Triolo
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Anastasia L Elias
- Chemical and Materials Engineering, W7-002 ECERF, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Kevin L Kilgore
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Anthony F DiMarco
- MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Kath Bogie
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta T6G 2G8, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 - 111 Avenue, Edmonton, Alberta T5G 0B7, Canada
| | - Musa L Audu
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Rudi Kobetic
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Sarah R Chang
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| | - Sean Dukelow
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Dennis J Bourbeau
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Steven W Brose
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA; Ohio University Heritage College of Osteopathic Medicine, Grosvenor Hall, Athens, OH 45701, USA
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Zelma H T Kiss
- Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Vivian K Mushahwar
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
11
|
Audu ML, Lombardo LM, Schnellenberger JR, Foglyano KM, Miller ME, Triolo RJ. A neuroprosthesis for control of seated balance after spinal cord injury. J Neuroeng Rehabil 2015; 12:8. [PMID: 25608888 PMCID: PMC4326199 DOI: 10.1186/1743-0003-12-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/13/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A major desire of individuals with spinal cord injury (SCI) is the ability to maintain a stable trunk while in a seated position. Such stability is invaluable during many activities of daily living (ADL) such as regular work in the home and office environments, wheelchair propulsion and driving a vehicle. Functional neuromuscular stimulation (FNS) has the ability to restore function to paralyzed muscles by application of measured low-level currents to the nerves serving those muscles. METHODS A feedback control system for maintaining seated balance under external perturbations was designed and tested in individuals with thoracic and cervical level spinal cord injuries. The control system relied on a signal related to the tilt of the trunk from the vertical position (which varied between 1.0 ≡ erect posture and 0.0 ≡ most forward flexed posture) derived from a sensor fixed to the sternum to activate the user's own hip and trunk extensor muscles via an implanted neuroprosthesis. A proportional-derivative controller modulated stimulation between trunk tilt values indicating deviation from the erect posture and maximum desired forward flexion. Tests were carried out with external perturbation forces set at 35%, 40% and 45% body-weight (BW) and maximal forward trunk tilt flexion thresholds set at 0.85, 0.75 and 0.70. RESULTS Preliminary tests in a case series of five subjects show that the controller could maintain trunk stability in the sagittal plane for perturbations up to 45% of body weight and for flexion thresholds as low as 0.7. The mean settling time varied across subjects from 0.5(±0.4) and 2.0 (±1.1) seconds. Mean response time of the feedback control system varied from 393(±38) ms and 536(±84) ms across the cohort. CONCLUSIONS The results show the high potential for robust control of seated balance against nominal perturbations in individuals with spinal cord injury and indicates that trunk control with FNS is a promising intervention for individuals with SCI.
Collapse
Affiliation(s)
- Musa L Audu
- />Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Lisa M Lombardo
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
| | - John R Schnellenberger
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
| | - Kevin M Foglyano
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
| | - Michael E Miller
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
| | - Ronald J Triolo
- />Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
- />Department of Orthopedics, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|