1
|
Deng R, Bruce OL, Gibbons KD, Fitzpatrick CK, Li L. Statistical Shape Modeling to Determine Poromechanics of the Human Knee Joint. Ann Biomed Eng 2025; 53:549-561. [PMID: 39565444 DOI: 10.1007/s10439-024-03648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
Subject-specific knee joint models are widely used to predict joint contact mechanics for individuals but may not capture the variance in knee joint geometry across a population. Statistical shape modeling uses the dataset of a cohort to encapsulate population-wide variability. The present study aimed to develop a shape modeling procedure for poromechanical finite element models of knee joint to account for population diversity in the creep response of knees. Shape models of right knee joints were created from MRI of 31 healthy male subjects using principal component analysis. Creep analysis was performed for 13 shape models in total, i.e., the average model, plus six models for both the first and second principal modes. For a given loading, the contact and fluid pressures varied substantially within these mathematically produced models but compared reasonably well to that of three subject-specific models that were constructed from individual knees, representing approximately the smallest, median and largest knees of the 31 right knees. While the joint size variation, generally represented by the first principal component, predominantly influenced the magnitudes of contact and fluid pressures, the joint shape variation characterized by the second principal component further affected the pressure distribution, and load sharing between the lateral and medial compartments. The present study evaluated a workflow for the statistical shape modeling of poromechanical behavior of knee joints with sample results based on a small population. However, the workflow can be readily used for a large population to address the challenge of interpatient variability in joint contact mechanics, particularly in contact and fluid pressures in articular cartilage, and variable creep behaviors of the joint associated with individual anatomical variations.
Collapse
Affiliation(s)
- Ruoqi Deng
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB, T2N 1N4, Canada
| | - Olivia L Bruce
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Kalin D Gibbons
- Computational Biosciences Laboratory, Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Clare K Fitzpatrick
- Computational Biosciences Laboratory, Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - LePing Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
2
|
Wei Y, Chen Y, Jia S, Yan L, Bi L. A Bioinspired Multi-Level Numerical Model of the Tibiofemoral Joint for Biomechanical and Biomimetic Applications. Biomimetics (Basel) 2025; 10:119. [PMID: 39997142 PMCID: PMC11853415 DOI: 10.3390/biomimetics10020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025] Open
Abstract
This study presents a comprehensive three-dimensional finite element (FE) model inspired by the biomechanics of the human knee, specifically the tibiofemoral joint during the gait cycle. Drawing from natural biological systems, the model integrates bio-inspired elements, including transversely isotropic materials, to replicate the anisotropic properties of ligaments and cartilage, along with anatomically realistic bone and meniscus structures. This dual-material approach ensures a physiologically accurate representation of knee mechanics under varying conditions. The model effectively captures key biomechanical parameters, including a maximum medial tibial cartilage contact pressure of 16.75 MPa at 25% of the stance phase and a maximum femoral cartilage pressure of 10.57 MPa at 75% of the stance phase. Furthermore, its strong correlation with in vivo and in vitro data highlights its potential for clinical applications in orthopedics, such as pre-surgical planning and post-operative assessments. By bridging the gap between biomechanics and bioinspired design, this research contributes significantly to the field of biomimetics and offers a robust simulation tool for enhancing joint protection strategies and optimizing implant designs.
Collapse
Affiliation(s)
- Yuyang Wei
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK;
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Yijie Chen
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Sihan Jia
- Department of Civil Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Lingyun Yan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
- Department of Robotics Engineering, School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Luzheng Bi
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China
| |
Collapse
|
3
|
Hamsayeh Abbasi Niasar E, Li L. Implication of region-dependent material properties of articular cartilage in the contact mechanics of porcine knee joint. BMC Musculoskelet Disord 2025; 26:149. [PMID: 39953574 PMCID: PMC11827382 DOI: 10.1186/s12891-025-08290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The site-specific tissue properties of knee cartilage may play an essential role in knee joint mechanical function, and mitigate joint injury and cartilage degeneration. The present study aimed to determine the significance of tissue inhomogeneity in knee joint contact mechanics using a porcine model. METHODS Finite element models were developed for a porcine knee with intact and total meniscectomy conditions to simulate whole-joint compression-relaxation tests under a 1.2-mm ramp-compression at 0.01, 0.1, or 1 mm/s. Two reference benchmarks were introduced for the implementation of poromechanical material properties of fibril-reinforced cartilage: Benchmark II consisted of 17 sets of cartilage properties, each for a region in the knee, representing site-specific inhomogeneity averaged from cartilage indentation maps of 14 porcine knees. Benchmark I was comprised of a single set of properties by taking the average properties of 17 regions in Benchmark II, assuming tissue homogeneity. To validate the modeling method, the reference benchmarks were used to produce results against whole-joint compression test data. RESULTS Both benchmarks were able to approximate experimental force-compression data obtained from the same knee with intact menisci and total meniscectomy, provided that the average properties from 14 knees were appropriately scaled to account for individual joint differences. Noticeable differences in stress and pressure distributions were observed between the benchmarks. For instance, benchmark I generated higher peak contact and fluid pressures in the medial tibial cartilage, but benchmark II produced the higher ones in the lateral tibial cartilage. The load sharing asymmetry between the lateral and medial compartments was reduced in benchmark II which was more pronounced for higher compression rates. On the other hand, benchmark II produced a more uniform stress distribution or lower maxima. Meniscectomy caused a slight shift of the contact centers in the tibial plateaus as compared to the intact joint. CONCLUSION The modeling results demonstrated substantial differences in loading distributions in the joint between the homogeneous and nonhomogeneous models represented by the two benchmarks, indicating the role of tissue inhomogeneity in the joint contact mechanics. Region-dependent tissue properties may need to be implemented in joint mechanical modeling to evaluate the site of cartilage prone to injury or degeneration.
Collapse
Affiliation(s)
- Erfan Hamsayeh Abbasi Niasar
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB, T2N 1N4, Canada
| | - LePing Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
4
|
Deng R, Uzuner S, Li LP. Impact of knee geometry on joint contact mechanics after meniscectomy. Sci Rep 2024; 14:28595. [PMID: 39562771 PMCID: PMC11576876 DOI: 10.1038/s41598-024-79662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Finite element modeling has served as a cornerstone in understanding knee joint mechanics post-meniscectomy, yet the influence of varying knee geometries remains unknown. The present study aimed to fill that gap by employing statistical shape modeling to generate knee models from MRI data of 31 human knees, capturing the population's knee size and shape variations. Finite element simulations were conducted to replicate intact, partial, and total medial meniscectomy conditions during standing. The results revealed a substantial shift in load distribution from the medial to lateral compartment following medial meniscectomy with its magnitude depending on knee geometry. Cartilages experienced variable degrees of pressure changes at different sites, which could also be different for fluid and contact pressures. While changes in joint size led to somewhat predictable alterations in contact pressure, variations in joint shape resulted in unexpected changes in contact and fluid pressures, emphasizing the need for computational simulations. The average knee geometry exhibited the lowest contact and fluid pressures under the given loading and boundary conditions, in contrast to knees with shapes deviating from the average. This study highlights the significance of individual knee shape in the biomechanical outcome of meniscectomy, potentially explaining the variability in clinical outcomes observed post-surgery.
Collapse
Affiliation(s)
- Ruoqi Deng
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB, T2N 1N4, Canada
| | - Sabri Uzuner
- Department of Mechatronics, Faculty of Engineering, University of Duzce, Konuralp Campus, 81620, Duzce, Marmara, Türkiye
| | - L P Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
5
|
Uzuner S, Li LP. Alteration in ACL loading after total and partial medial meniscectomy. BMC Musculoskelet Disord 2024; 25:94. [PMID: 38273316 PMCID: PMC11395656 DOI: 10.1186/s12891-024-07201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Anterior cruciate ligament (ACL) injuries are often caused by high impact loadings during competitive sports but may also happen during regular daily activities due to tissue degeneration or altered mechanics after a previous knee injury or surgery such as meniscectomy. Most existing research on ACL injury has focused on impact loading scenarios or the consequence of ACL injury on meniscus. The objective of the present study was to investigate the effects of varying degrees of medial meniscectomy on the mechanics of intact ACL by performing a poromechanical finite element analysis under moderate creep loadings. Four clinical scenarios with 25%, 50%, 75% and total medial meniscectomy were compared with the intact knee finite element model. Our results suggested that different medial meniscal resections may increase, at different extents, the knee laxity and peak tensile stress in the ACL, potentially leading to collagen fiber fatigue tearing and altered mechanobiology under normal joint loadings. Interestingly, the ACL stress actually increased during early knee creep (~ 3 min) before it reached an equilibrium. In addition, meniscectomy accelerated ACL stress reduction during knee creep, transferred more loading to tibial cartilage, increased contact pressure, and shifted the contact center posteriorly. This study may contribute to a better understanding of the interaction of meniscectomy and ACL integrity during daily loadings.
Collapse
Affiliation(s)
- S Uzuner
- Department of Mechatronics, Faculty of Engineering, University of Duzce, Konuralp Campus, 81620, Duzce, Marmara, Türkiye.
| | - L P Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
6
|
Jahangir S, Esrafilian A, Ebrahimi M, Stenroth L, Alkjær T, Henriksen M, Englund M, Mononen ME, Korhonen RK, Tanska P. Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties. J Biomech 2023; 160:111800. [PMID: 37797566 DOI: 10.1016/j.jbiomech.2023.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Fibril-reinforced poroviscoelastic material models are considered state-of-the-art in modeling articular cartilage biomechanics. Yet, cartilage material parameters are often based on bovine tissue properties in computational knee joint models, although bovine properties are distinctly different from those of humans. Thus, we aimed to investigate how cartilage mechanical responses are affected in the knee joint model during walking when fibril-reinforced poroviscoelastic properties of cartilage are based on human data instead of bovine. We constructed a finite element knee joint model in which tibial and femoral cartilages were modeled as fibril-reinforced poroviscoelastic material using either human or bovine data. Joint loading was based on subject-specific gait data. The resulting mechanical responses of knee cartilage were compared between the knee joint models with human or bovine fibril-reinforced poroviscoelastic cartilage properties. Furthermore, we conducted a sensitivity analysis to determine which fibril-reinforced poroviscoelastic material parameters have the greatest impact on cartilage mechanical responses in the knee joint during walking. In general, bovine cartilage properties yielded greater maximum principal stresses and fluid pressures (both up to 30%) when compared to the human cartilage properties during the loading response in both femoral and tibial cartilage sites. Cartilage mechanical responses were very sensitive to the collagen fibril-related material parameter variations during walking while they were unresponsive to proteoglycan matrix or fluid flow-related material parameter variations. Taken together, human cartilage material properties should be accounted for when the goal is to compare absolute mechanical responses of knee joint cartilage as bovine material parameters lead to substantially different cartilage mechanical responses.
Collapse
Affiliation(s)
- Sana Jahangir
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Amir Esrafilian
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Lauri Stenroth
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine Alkjær
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; The Parker Institute, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Marius Henriksen
- The Parker Institute, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Martin Englund
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mika E Mononen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
7
|
Paz A, Orozco GA, Tanska P, García JJ, Korhonen RK, Mononen ME. A novel knee joint model in FEBio with inhomogeneous fibril-reinforced biphasic cartilage simulating tissue mechanical responses during gait: data from the osteoarthritis initiative. Comput Methods Biomech Biomed Engin 2023; 26:1353-1367. [PMID: 36062938 DOI: 10.1080/10255842.2022.2117548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/03/2022]
Abstract
We developed a novel knee joint model in FEBio to simulate walking. Knee cartilage was modeled using a fibril-reinforced biphasic (FRB) formulation with depth-wise collagen architecture and split-lines to account for cartilage structure. Under axial compression, the knee model with FRB cartilage yielded contact pressures, similar to reported experimental data. Furthermore, gait analysis with FRB cartilage simulated spatial and temporal trends in cartilage fluid pressures, stresses, and strains, comparable to those of a fibril-reinforced poroviscoelastic (FRPVE) material in Abaqus. This knee joint model in FEBio could be used for further studies of knee disorders using physiologically relevant loading.
Collapse
Affiliation(s)
- Alexander Paz
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Escuela de Ingeniería Civil y Geomática, Universidad del Valle, Cali, Colombia
| | - Gustavo A Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - José J García
- Escuela de Ingeniería Civil y Geomática, Universidad del Valle, Cali, Colombia
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Macaluso B, Hassan CR, Swanson DR, Nazemi A, Zaverukha E, Paulus M, Qin YX, Komatsu DE. Biomechanical Comparison of Krackow Repair and Percutaneous Achilles Repair System for Achilles Tendon Rupture Fixation: A Cadaveric and Finite Element Analysis Study. FOOT & ANKLE ORTHOPAEDICS 2022; 7:24730114221088502. [PMID: 35386585 PMCID: PMC8978323 DOI: 10.1177/24730114221088502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Open and percutaneous repair surgeries are widely used for the Achilles tendon rupture. However, prior biomechanic studies of these 2 approaches have mixed conclusions; therefore, we designed a cadaver and finite element (FE) model biomechanical study to compare the mechanical differences between the percutaneous Achilles repair system (PARS) and Krackow open repair under tensile load and rotation. Methods Sixteen Achilles tendons were extracted from fresh-frozen cadaver ankles and the calcaneums were fixed in mortar. A force control dynamic tensile mechanical test was performed at 1 Hz with 30- and 100-N cyclic loads. Initial intact baseline testing was followed by an incision on all Achilles tendons, 4 cm from the calcaneus insertion, which were then repaired using the PARS (n = 8) or Krackow (n = 8) method. Recorded force-displacement values were used to calculate mechanical parameters, and statistical significance of differences was determined by unpaired (between repair techniques) and paired (intact vs repaired) t tests. Material properties of the Achilles tendon in the FE model were modified and a 10-Nm flexion was simulated for intact and surgical groups. Results No differences were found between intact tendons assigned to PARS or Krackow repairs in Young's modulus (P = .582) and stiffness (P = .323). Pre- and postoperative Young's modulus was significantly decreased for both groups (Intact 230.60±100.76 MPa vs PARS 142.44±37.37 MPa, P < .012; Intact 207.46±81.12 MPa vs Krackow109.43±27.63 MPa, P < .002). Stiffness decreased significantly after surgery for both groups (Intact 25.33±10.89 N/mm vs PARS 6.51±1.68 N/mm, P < .003; Intact 20.30±8.65 N/mm vs Krackow 5.97±1.30 N/mm, P < .003). PARS ultimate tensile strength was significantly higher than the Krackow (PARS 280.29±47.32 N vs Krackow 196.97±54.28 N, P < .003) but not significantly different in the ultimate tensile strain. PARS had a significantly lower postoperative gap compared to Krackow (PARS 9.75±5.87 mm vs Krackow 25.19±7.72 mm, P < .001). FE analysis predicted an increased talocalcaneal contact pressure, maximum principal stress, and rotation in the Krackow vs PARS models, respectively. Conclusion Biomechanical parameters observed in this study through mechanical testing and FE analysis favor the selection of PARS over the Krackow repair based on better strength, higher failure force, and lower gap generation.Clinical Relevance: The study has analyzed two Achilles tendon repair methods using cadaver and numerical estimation and may help clinicians gain insight into selection of tendon repair approaches to generate better clinical outcomes.
Collapse
Affiliation(s)
- Bonnie Macaluso
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Chaudhry R. Hassan
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David R. Swanson
- Department of Orthopaedics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Alireza Nazemi
- Department of Orthopaedics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Eugene Zaverukha
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Megan Paulus
- Department of Orthopaedics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David E. Komatsu
- Department of Orthopaedics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
9
|
Peters AE, Geraghty B, Bates KT, Akhtar R, Readioff R, Comerford E. Ligament mechanics of ageing and osteoarthritic human knees. Front Bioeng Biotechnol 2022; 10:954837. [PMID: 36082159 PMCID: PMC9446756 DOI: 10.3389/fbioe.2022.954837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Knee joint ligaments provide stability to the joint by preventing excessive movement. There has been no systematic effort to study the effect of OA and ageing on the mechanical properties of the four major human knee ligaments. This study aims to collate data on the material properties of the anterior (ACL) and posterior (PCL) cruciate ligaments, medial (MCL) and lateral (LCL) collateral ligaments. Bone-ligament-bone specimens from twelve cadaveric human knee joints were extracted for this study. The cadaveric knee joints were previously collected to study ageing and OA on bone and cartilage material properties; therefore, combining our previous bone and cartilage data with the new ligament data from this study will facilitate subject-specific whole-joint modelling studies. The bone-ligament-bone specimens were tested under tensile loading to failure, determining material parameters including yield and ultimate (failure) stress and strain, secant modulus, tangent modulus, and stiffness. There were significant negative correlations between age and ACL yield stress (p = 0.03), ACL failure stress (p = 0.02), PCL secant (p = 0.02) and tangent (p = 0.02) modulus, and LCL stiffness (p = 0.046). Significant negative correlations were also found between OA grades and ACL yield stress (p = 0.02) and strain (p = 0.03), and LCL failure stress (p = 0.048). However, changes in age or OA grade did not show a statistically significant correlation with the MCL tensile parameters. Due to the small sample size, the combined effect of age and the presence of OA could not be statistically derived. This research is the first to report tensile properties of the four major human knee ligaments from a diverse demographic. When combined with our previous findings on bone and cartilage for the same twelve knee cadavers, the current ligament study supports the conceptualisation of OA as a whole-joint disease that impairs the integrity of many peri-articular tissues within the knee. The subject-specific data pool consisting of the material properties of the four major knee ligaments, subchondral and trabecular bones and articular cartilage will advance knee joint finite element models.
Collapse
Affiliation(s)
- Abby E Peters
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, United Kingdom.,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Brendan Geraghty
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Karl T Bates
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, United Kingdom
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Rosti Readioff
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, United Kingdom.,Institute of Medical and Biological Engineering, School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom.,School of Dentistry, University of Liverpool, Liverpool, United Kingdom
| | - Eithne Comerford
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, United Kingdom.,School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Seyedpour SM, Nafisi S, Nabati M, Pierce DM, Reichenbach JR, Ricken T. Magnetic Resonance Imaging-based biomechanical simulation of cartilage: A systematic review. J Mech Behav Biomed Mater 2021; 126:104963. [PMID: 34894500 DOI: 10.1016/j.jmbbm.2021.104963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022]
Abstract
MRI-based mathematical and computational modeling studies can contribute to a better understanding of the mechanisms governing cartilage's mechanical performance and cartilage disease. In addition, distinct modeling of cartilage is needed to optimize artificial cartilage production. These studies have opened up the prospect of further deepening our understanding of cartilage function. Furthermore, these studies reveal the initiation of an engineering-level approach to how cartilage disease affects material properties and cartilage function. Aimed at researchers in the field of MRI-based cartilage simulation, research articles pertinent to MRI-based cartilage modeling were identified, reviewed, and summarized systematically. Various MRI applications for cartilage modeling are highlighted, and the limitations of different constitutive models used are addressed. In addition, the clinical application of simulations and studied diseases are discussed. The paper's quality, based on the developed questionnaire, was assessed, and out of 79 reviewed papers, 34 papers were determined as high-quality. Due to the lack of the best constitutive models for various clinical conditions, researchers may consider the effect of constitutive material models on the cartilage disease simulation. In the future, research groups may incorporate various aspects of machine learning into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification, such as gait analysis.
Collapse
Affiliation(s)
- S M Seyedpour
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany; Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - S Nafisi
- Faculty of Pharmacy, Istinye University, Maltepe, Cirpici Yolu B Ck. No. 9, 34010 Zeytinburnu, Istanbul, Turkey
| | - M Nabati
- Department of Mechanical Engineering, Faculty of Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - D M Pierce
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT, 06269, USA; Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - J R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany; Center of Medical Optics and Photonics, Friedrich Schiller University Jena, Germany; Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Germany
| | - T Ricken
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany; Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany.
| |
Collapse
|
11
|
Elhattab K, Hefzy MS, Hanf Z, Crosby B, Enders A, Smiczek T, Haghshenas M, Jahadakbar A, Elahinia M. Biomechanics of Additively Manufactured Metallic Scaffolds-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6833. [PMID: 34832234 PMCID: PMC8625735 DOI: 10.3390/ma14226833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
This review paper is related to the biomechanics of additively manufactured (AM) metallic scaffolds, in particular titanium alloy Ti6Al4V scaffolds. This is because Ti6Al4V has been identified as an ideal candidate for AM metallic scaffolds. The factors that affect the scaffold technology are the design, the material used to build the scaffold, and the fabrication process. This review paper includes thus a discussion on the design of Ti6A4V scaffolds in relation to how their behavior is affected by their cell shapes and porosities. This is followed by a discussion on the post treatment and mechanical characterization including in-vitro and in-vivo biomechanical studies. A review and discussion are also presented on the ongoing efforts to develop predictive tools to derive the relationships between structure, processing, properties and performance of powder-bed additive manufacturing of metals. This is a challenge when developing process computational models because the problem involves multi-physics and is of multi-scale in nature. Advantages, limitations, and future trends in AM scaffolds are finally discussed. AM is considered at the forefront of Industry 4.0, the fourth industrial revolution. The market of scaffold technology will continue to boom because of the high demand for human tissue repair.
Collapse
Affiliation(s)
| | - Mohamed Samir Hefzy
- Department of Mechanical, Industrial & Manufacturing Engineering, College of Engineering, The University of Toledo, Toledo, OH 43606, USA; (K.E.); (Z.H.); (B.C.); (A.E.); (T.S.); (M.H.); (A.J.); (M.E.)
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Berni M, Marchiori G, Cassiolas G, Grassi A, Zaffagnini S, Fini M, Lopomo NF, Maglio M. Anisotropy and inhomogeneity of permeability and fibrous network response in the pars intermedia of the human lateral meniscus. Acta Biomater 2021; 135:393-402. [PMID: 34411754 DOI: 10.1016/j.actbio.2021.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Within the human tibiofemoral joint, meniscus plays a key role due to its peculiar time-dependent mechanical characteristics, inhomogeneous structure and compositional features. To better understand the pathophysiological mechanisms underlying this essential component, it is mandatory to analyze in depth the relationship between its structure and the function it performs in the joint. Accordingly, the aim of this study was to evaluate the behavior of both solid and fluid phases of human meniscus in response to compressive loads, by integrating mechanical assessment and histological analysis. Cubic specimens were harvested from seven knee lateral menisci, specifically from anterior horn, pars intermedia and posterior horn; unconfined compressive tests were then performed according to three main loading directions (i.e., radial, circumferential and vertical). Fibril modulus, matrix modulus and hydraulic permeability of the tissue were thence estimated through a fibril-network-reinforced biphasic model. Tissue porosity and collagen fibers arrangement were assessed through histology for each region and related to the loading directions adopted during mechanical tests. Regional and strain-dependent constitutive parameters were finally proposed for the human lateral meniscus, suggesting an isotropic behavior of both the horns, and a transversely isotropic response of the pars intermedia. Furthermore, the histological findings supported the evidences highlighted by the compressive tests. Indeed, this study provided novel insights concerning the functional behavior of human menisci by integrating mechanical and histological characterizations and thus highlighting the key role of this component in knee contact mechanics and presenting fundamental information that can be used in the development of tissue-engineered substitutes. STATEMENT OF SIGNIFICANCE: This work presents an integration to the approaches currently used to model the mechanical behavior of the meniscal tissue. This study assessed in detail the regional and directional contributions of both the meniscal solid and fluid phases during compressive response, providing also complementary histological evidence. Within this updated perspective, both knee computational modeling and meniscal tissue engineering can be improved to have an effective impact on the clinical practice.
Collapse
|
13
|
Uzuner S, Kuntze G, Li LP, Ronsky JL, Kucuk S. Creep behavior of human knee joint determined with high-speed biplanar video-radiography and finite element simulation. J Mech Behav Biomed Mater 2021; 125:104905. [PMID: 34700107 DOI: 10.1016/j.jmbbm.2021.104905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Creep and relaxation of knee cartilage and meniscus have been extensively studied at the tissue level with constitutive laws well established. At the joint level, however, both experimental and model studies have been focused on either elastic or kinematic responses of the knee, where the time-dependent response is typically neglected for simplicity. The objectives of this study were to quantify the in-vivo creep behavior of human knee joints produced by the cartilaginous tissues and to use the relevant data to validate a previously proposed poromechanical model. Two participants with no history of leg injury volunteered for 3T magnetic resonance imaging (MRI) of their unloaded right knees and for biplanar video-radiography (BVR) of the same knees during standing on an instrumented treadmill for 10 min. Approximately 550 temporal data points were obtained for the in-vivo displacement of the right femur relative to the tibia of the knee. Models of the bones and soft tissues were derived from the MRI. The bone models were used to reconstruct the 3D bone kinematics measured using BVR. Ground reaction forces were simultaneously recorded for the right leg, which were used as input for the subject-specific finite element knee models. Cartilaginous tissues were modeled as fluid-saturated fibril-reinforced materials. In-vivo creep of the knee was experimentally observed for both participants, i.e., the joint displacement increased with time while the reaction forces at the foot were approximately constant. The creep displacements obtained from the finite element models compared well with the experimental data when the tissue properties were calibrated (Pearson correlation coefficient = 0.99). The results showed the capacity of the poromechanical knee model to capture the creep response of the joint. The combined experimental and model study may be used to understand the fluid-pressure load support and contact mechanics of the joint using material properties calibrated from the displacement data, which enhance the fidelity of model results.
Collapse
Affiliation(s)
- S Uzuner
- Department of Mechatronics, Dr. Engin PAK Cumayeri Vocational School, University of Duzce, Cumayeri, Duzce, Marmara, 81700, Turkey.
| | - G Kuntze
- Faculty of Kinesiology, University of Calgary, 2500 University Drive, N.W, Calgary, Alberta, Canada, T2N 1N4
| | - L P Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W, Calgary, Alberta, Canada, T2N 1N4.
| | - J L Ronsky
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W, Calgary, Alberta, Canada, T2N 1N4
| | - S Kucuk
- Department of Biomedical Engineering, University of Kocaeli, Izmit, Kocaeli, Marmara, 41001, Turkey
| |
Collapse
|
14
|
Elahi SA, Tanska P, Mukherjee S, Korhonen RK, Geris L, Jonkers I, Famaey N. Guide to mechanical characterization of articular cartilage and hydrogel constructs based on a systematic in silico parameter sensitivity analysis. J Mech Behav Biomed Mater 2021; 124:104795. [PMID: 34488174 DOI: 10.1016/j.jmbbm.2021.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Osteoarthritis is a whole joint disease with cartilage degeneration being an important manifestation. Tissue engineering treatment is a solution for repairing cartilage defects by implantation of chondrocyte-laden hydrogel constructs within the defect. In silico models have recently been introduced to simulate and optimize the design of these constructs. These models require accurate knowledge on the mechanical properties of the hydrogel constructs and cartilage explants, which are challenging to obtain due to their anisotropic structure and time-dependent behaviour. We performed a systematic in silico parameter sensitivity analysis to find the most efficient unconfined compression testing protocols for mechanical characterization of hydrogel constructs and cartilage explants, with a minimum number of tests but maximum identifiability of the material parameters. The construct and explant were thereby modelled as porohyperelastic and fibril-reinforced poroelastic materials, respectively. Three commonly used loading regimes were simulated in Abaqus (ramp, relaxation and dynamic loading) with varying compressive strain magnitudes and rates. From these virtual experiments, the resulting material parameters were obtained for each combination using a numerical inverse identification scheme. For hydrogels, maximum sensitivity to the different material parameters was found when using a single step ramp loading (20% compression with 10%/s rate) followed by 15 min relaxation. For cartilage explants, a two-stepped ramp loading (10% compression with 10%/s rate and 10% compression with 1%/s rate), each step followed by 15 min relaxation, yielded the maximum sensitivity to the different material parameters. With these protocols, the material parameters could be retrieved with the lowest amount of uncertainty (hydrogel: < 2% and cartilage: < 6%). These specific results and the overall methodology can be used to optimize mechanical testing protocols to yield reliable material parameters for in silico models of cartilage and hydrogel constructs.
Collapse
Affiliation(s)
- Seyed Ali Elahi
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Soft Tissue Biomechanics Group, Biomechanics Division, Mechanical Engineering Department, KU Leuven, Leuven, Belgium.
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Satanik Mukherjee
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, KU Leuven, Leuven, Belgium; GIGA in Silico Medicine, University of Liège, Liège, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Nele Famaey
- Soft Tissue Biomechanics Group, Biomechanics Division, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Elastic, Dynamic Viscoelastic and Model-Derived Fibril-Reinforced Poroelastic Mechanical Properties of Normal and Osteoarthritic Human Femoral Condyle Cartilage. Ann Biomed Eng 2021; 49:2622-2634. [PMID: 34341898 PMCID: PMC8455392 DOI: 10.1007/s10439-021-02838-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) degrades articular cartilage and weakens its function. Modern fibril-reinforced poroelastic (FRPE) computational models can distinguish the mechanical properties of main cartilage constituents, namely collagen, proteoglycans, and fluid, thus, they can precisely characterize the complex mechanical behavior of the tissue. However, these properties are not known for human femoral condyle cartilage. Therefore, we aimed to characterize them from human subjects undergoing knee replacement and from deceased donors without known OA. Multi-step stress-relaxation measurements coupled with sample-specific finite element analyses were conducted to obtain the FRPE material properties. Samples were graded using OARSI scoring to determine the severity of histopathological cartilage degradation. The results suggest that alterations in the FRPE properties are not evident in the moderate stages of cartilage degradation (OARSI 2-3) as compared with normal tissue (OARSI 0-1). Drastic deterioration of the FRPE properties was observed in severely degraded cartilage (OARSI 4). We also found that the FRPE properties of femoral condyle cartilage related to the collagen network (initial fibril-network modulus) and proteoglycan matrix (non-fibrillar matrix modulus) were greater compared to tibial and patellar cartilage in OA. These findings may inform cartilage tissue-engineering efforts and help to improve the accuracy of cartilage representations in computational knee joint models.
Collapse
|
16
|
Otoo B, Li L, Hart DA, Herzog W. Development of a Porcine Model to Assess the Effect of In-Situ Knee Joint Loading On Site-Specific Cartilage Gene Expression. J Biomech Eng 2021; 144:1115048. [PMID: 34318319 DOI: 10.1115/1.4051922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 11/08/2022]
Abstract
Cyclic mechanical loading of cartilage induces stresses and fluid flow which are thought to modulate chondrocyte metabolism. The uneven surface, plus the heterogeneity of cartilage within a joint, makes stress and fluid pressure distribution in the tissue non-uniform, and gene expression may vary at different sites as a function of load magnitude, frequency and time. In previous studies, cartilage explants were used for loading tests to investigate biological responses of the cartilage to mechanical loading. In contrast, we used loading tests on intact knee joints, to better reflect the loading conditions in a joint, and thus provide a more physiologically relevant mechanical environment. Gene expression levels in loaded samples for a selection of relevant genes were compared with those of the corresponding unloaded control samples to characterize potential differences. Furthermore, the effect of load magnitude and duration on gene expression levels were investigated. We observed differences in gene expression levels between samples from different sites in the same joint and between corresponding samples from the same site in loaded and unloaded joints. Consistent with previous findings, our results indicate that there is a critical upper and lower threshold of loading for triggering the expression of certain genes. Variations in gene expression levels may reflect the effect of local loading, topography and structure of the cartilage in an intact joint on the metabolic activity of the associated cells.
Collapse
Affiliation(s)
- Baaba Otoo
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - LePing Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - David A Hart
- McCaig Institute for Bone and Joint Health, Department of Surgery, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
17
|
Niu J, Qin X, Bai J, Li H. Reconstruction and optimization of the 3D geometric anatomy structure model for subject-specific human knee joint based on CT and MRI images. Technol Health Care 2021; 29:221-238. [PMID: 33682761 PMCID: PMC8150550 DOI: 10.3233/thc-218022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: Nowadays, the total knee arthroplasty (TKA) technique plays an important role in surgical treatment for patients with severe knee osteoarthritis (OA). However, there are still several key issues such as promotion of osteotomy accuracy and prosthesis matching degree that need to be addressed. OBJECTIVE: It is significant to construct an accurate three-dimensional (3D) geometric anatomy structure model of subject-specific human knee joint with major bone and soft tissue structures, which greatly contributes to obtaining personalized osteotomy guide plate and suitable size of prosthesis. METHODS: Considering different soft tissue structures, magnetic resonance imaging (MRI) scanning sequences involving two-dimensional (2D) spin echo (SE) sequence T1 weighted image (T1WI) and 3D SE sequence T2 weighted image (T2WI) fat suppression (FS) are selected. A 3D modeling methodology based on computed tomography (CT) and two sets of MRI images is proposed. RESULTS: According to the proposed methods of image segmentation and 3D model registration, a novel 3D knee joint model with high accuracy is finally constructed. Furthermore, remeshing is used to optimize the established model by adjusting the relevant parameters. CONCLUSIONS: The modeling results demonstrate that reconstruction and optimization model of 3D knee joint can clearly and accurately reflect the key characteristics, including anatomical structure and geometric morphology for each component.
Collapse
Affiliation(s)
- Junlong Niu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiansheng Qin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jing Bai
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Haiyan Li
- Department of Magnetic Resonance Imaging, Xi'an Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
18
|
Zanjani-Pour S, Giorgi M, Dall'Ara E. Development of Subject Specific Finite Element Models of the Mouse Knee Joint for Preclinical Applications. Front Bioeng Biotechnol 2020; 8:558815. [PMID: 33178671 PMCID: PMC7593650 DOI: 10.3389/fbioe.2020.558815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis is the most common musculoskeletal disabling disease worldwide. Preclinical studies on mice are commonly performed to test new interventions. Finite element (FE) models can be used to study joint mechanics, but usually simplified geometries are used. The aim of this project was to create a realistic subject specific FE model of the mouse knee joint for the assessment of joint mechanical properties. Four different FE models of a C57Bl/6 female mouse knee joint were created based on micro-computed tomography images of specimens stained with phosphotungstic acid in order to include different features: individual cartilage layers with meniscus, individual cartilage layers without meniscus, homogeneous cartilage layers with two different thickness values, and homogeneous cartilage with same thickness for both condyles. They were all analyzed under compressive displacement and the cartilage contact pressure was compared at 0.3 N reaction force. Peak contact pressure in the femur cartilage was 25% lower in the model with subject specific cartilage compared to the simpler model with homogeneous cartilage. A much more homogeneous pressure distribution across the joint was observed in the model with meniscus, with cartilage peak pressure 5–34% lower in the two condyles compared to that with individual cartilage layers. In conclusion, modeling the meniscus and individual cartilage was found to affect the pressure distribution in the mouse knee joint under compressive load and should be included in realistic models for assessing the effect of interventions preclinically.
Collapse
Affiliation(s)
- Sahand Zanjani-Pour
- Department of Oncology and Metabolism, Mellanby Center for Bone Research, University of Sheffield, Sheffield, United Kingdom.,Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Mario Giorgi
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Certara Quantitative System Pharmacology, Certara UK Ltd., Simcyp Division, Sheffield, United Kingdom
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Center for Bone Research, University of Sheffield, Sheffield, United Kingdom.,Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Uzuner S, Li L, Kucuk S, Memisoglu K. Changes in Knee Joint Mechanics After Medial Meniscectomy Determined With a Poromechanical Model. J Biomech Eng 2020; 142:101006. [PMID: 32451526 DOI: 10.1115/1.4047343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 11/08/2022]
Abstract
The menisci play a vital role in the mechanical function of knee joint. Unfortunately, meniscal tears often occur. Meniscectomy is a surgical treatment for meniscal tears; however, mechanical changes in the knee joint after meniscectomy is a risk factor to osteoarthritis (OA). The objective of this study was to investigate the altered cartilage mechanics of different medial meniscectomies using a poromechanical model of the knee joint. The cartilaginous tissues were modeled as nonlinear fibril-reinforced porous materials with full saturation. The ligaments were considered as anisotropic hyperelastic and reinforced by a fibrillar collagen network. A compressive creep load of ¾ body weight was applied in full extension of the right knee during 200 s standing. Four finite element models were developed to simulate different meniscectomies of the joint using the intact model as the reference for comparison. The modeling results showed a higher load support in the lateral than medial compartment in the intact joint, and the difference in the load share between the compartments was augmented with medial meniscectomy. Similarly, the contact and fluid pressures were higher in the lateral compartment. On the other hand, the medial meniscus in the normal joint experienced more loading than the lateral one. Furthermore, the contact pressure distribution changed with creep, resulting in a load transfer between cartilage and meniscus within each compartment while the total load born by the compartment remained unchanged. This study has quantified the altered contact mechanics on the type and size of meniscectomies, which may be used to understand meniscal tear or support surgical decisions.
Collapse
Affiliation(s)
- Sabri Uzuner
- Department of Mechatronics, Dr. Engin PAK Cumayeri Vocational School, University of Duzce, Cumayeri, Duzce, Marmara 81700, Turkey
| | - LePing Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB T2N 1N4, Canada
| | - Serdar Kucuk
- Department of Biomedical Engineering, University of Kocaeli, Izmit, Kocaeli, Marmara 41001, Turkey
| | - Kaya Memisoglu
- Medical Faculty, Department of Orthopedics and Traumatology, University of Kocaeli, Izmit, Kocaeli, Marmara 41001, Turkey
| |
Collapse
|
20
|
Constitutive modeling of menisci tissue: a critical review of analytical and numerical approaches. Biomech Model Mechanobiol 2020; 19:1979-1996. [PMID: 32572727 DOI: 10.1007/s10237-020-01352-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Menisci are fibrocartilaginous disks consisting of soft tissue with a complex biomechanical structure. They are critical determinants of the kinematics as well as the stability of the knee joint. Several studies have been carried out to formulate tissue mechanical behavior, leading to the development of a wide spectrum of constitutive laws. In addition to developing analytical tools, extensive numerical studies have been conducted on menisci modeling. This study reviews the developments of the most widely used continuum models of the meniscus mechanical properties in conjunction with emerging analytical and numerical models used to study the meniscus. The review presents relevant approaches and assumptions used to develop the models and includes discussions regarding strengths, weaknesses, and discrepancies involved in the presented models. The study presents a comprehensive coverage of relevant publications included in Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, Springer, and Scopus databases. This review aims at opening novel avenues for improving menisci modeling within the framework of constitutive modeling through highlighting the needs for further research directed toward determining key factors in gaining insight into the biomechanics of menisci which is crucial for the elaborate design of meniscal replacements.
Collapse
|
21
|
Ristaniemi A, Torniainen J, Stenroth L, Finnilä M, Paakkonen T, Töyräs J, Korhonen R. Comparison of water, hydroxyproline, uronic acid and elastin contents of bovine knee ligaments and patellar tendon and their relationships with biomechanical properties. J Mech Behav Biomed Mater 2020; 104:103639. [DOI: 10.1016/j.jmbbm.2020.103639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
|
22
|
Chong SY, Shen L, Frantz S. Loading capacity of dynamic knee spacers: a comparison between hand-moulded and COPAL spacers. BMC Musculoskelet Disord 2019; 20:613. [PMID: 31864332 PMCID: PMC6925492 DOI: 10.1186/s12891-019-2982-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background The two-stage revision protocol represents the current gold standard for treating infected total knee replacement implants. Allowing early mobility with weight-bearing between staged procedures will enable early restoration to knee function. So, the mechanical performance of knee spacers is a key issue. Commercially available moulds are often used as they are easy to prepare and produce smoother surfaces of the articulating parts. However, they are costly, and only for single use. A cost-effective alternative is the surgeon-made hand-moulded spacers. In this study, we wanted to determine how the hand-moulded spacers will compare biomechanically with the commercially available COPAL spacers. Methods Seven cadaveric knees were implanted with knee spacers fabricated using COPAL knee moulds. The same surgeon implanted eight cadaveric knees with hand-moulded spacers. In the first test protocol, an axial load was applied at 200 mm/min till failure. In the second test protocol, the knees were cyclically loaded in five steps of 1000 cycles each from 30-400 N, 30-600 N, 30-800 N, 30-1000 N, 30-1200 N at 1.5 Hz. Results COPAL knee spacers demonstrated a maximum load and mean stiffness of 5202 (± 486.9) N and 1098 (± 201.5) N/mm respectively. The hand-moulded knee spacers demonstrated a mean stiffness of 4509 (± 1092.6) N and 1008.7 (± 275.4) N/mm respectively. The maximum axial displacement was 1.19 ± 0.57 mm and 0.89 ± 0.30 mm for specimens implanted with COPAL knee spacers and hand-moulded spacers respectively. The differences between COPAL and hand-moulded knee spacers were not statistically different. Conclusions Our study demonstrated that dynamic knee spacers may be able to withstand more than the touch-down load permitted in previous studies, and this may allow more weight-bearing during ambulation. Previous studies have demonstrated that hand-moulded knee spacers have similar advantages to commercially available dynamic spacers with respect to mobility, pain, bone loss, and reinfection rate. Given that ambulation with weight-bearing up to 1200 N is permitted during rehabilitation, it may be more cost-effective to fabricate hand-moulded spacers in revision total knee arthroplasty.
Collapse
Affiliation(s)
- Sook-Yee Chong
- Department of Orthopaedic Surgery, University Hospital Tuebingen, Tuebingen, Germany. .,Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| | - Lu Shen
- Institute of Applied Mechanics, University of Stuttgart, Stuttgart, Germany
| | - Sandra Frantz
- Department of Orthopaedic Surgery, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
23
|
Cooper RJ, Wilcox RK, Jones AC. Finite element models of the tibiofemoral joint: A review of validation approaches and modelling challenges. Med Eng Phys 2019; 74:1-12. [DOI: 10.1016/j.medengphy.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
|
24
|
Hassan CR, Qin YX, Komatsu DE, Uddin SMZ. Utilization of Finite Element Analysis for Articular Cartilage Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3331. [PMID: 31614845 PMCID: PMC6829543 DOI: 10.3390/ma12203331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
Scaffold design plays an essential role in tissue engineering of articular cartilage by providing the appropriate mechanical and biological environment for chondrocytes to proliferate and function. Optimization of scaffold design to generate tissue-engineered cartilage has traditionally been conducted using in-vitro and in-vivo models. Recent advances in computational analysis allow us to significantly decrease the time and cost of scaffold optimization using finite element analysis (FEA). FEA is an in-silico analysis technique that allows for scaffold design optimization by predicting mechanical responses of cells and scaffolds under applied loads. Finite element analyses can potentially mimic the morphology of cartilage using mesh elements (tetrahedral, hexahedral), material properties (elastic, hyperelastic, poroelastic, composite), physiological loads by applying loading conditions (static, dynamic), and constitutive stress-strain equations (linear, porous-elastic, biphasic). Furthermore, FEA can be applied to the study of the effects of dynamic loading, material properties cell differentiation, cell activity, scaffold structure optimization, and interstitial fluid flow, in isolated or combined multi-scale models. This review covers recent studies and trends in the use of FEA for cartilage tissue engineering and scaffold design.
Collapse
Affiliation(s)
- Chaudhry R Hassan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - David E Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sardar M Z Uddin
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
25
|
Vafaeian B, Adeeb S, El-Rich M, Dulai SK, Jaremko JL. Prediction of mechanical behavior of cartilaginous infant hips in pavlik harness: A subject-specific simulation study on normal and dysplastic hips. J Orthop Res 2019; 37:655-664. [PMID: 30604892 DOI: 10.1002/jor.24213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/11/2018] [Indexed: 02/04/2023]
Abstract
In dysplastic infant hips undergoing abduction harness treatment, cartilage contact pressure is believed to have a role in therapeutic cartilage remodeling and also in the complication of femoral head avascular necrosis. To improve our understanding of the role of contact pressure in the remodeling and the complication, we modeled cartilage contact pressure in cartilaginous infant hips undergoing Pavlik harness treatment. In subject-specific finite element modeling, we simulated contact pressure of normal and dysplastic hips in Pavlik harness at 90° flexion and gravity-induced abduction angles of 40°, 60° and 80°. We demonstrated that morphologies of acetabulum and femoral head both affected contact pressure distributions. The simulations showed that in Pavlik harness, contact pressure was mainly distributed along anterior and posterior acetabulum, leaving the acetabular roof only lightly loaded (normal hip) or unloaded (dysplastic hip). From a mechanobiological perspective, these conditions may contribute to therapeutic remodeling of the joint in Pavlik harness. Furthermore, contact pressure increased with the angle of abduction, until at the extreme abduction angle (80°), the lateral femoral head also contacted the posterior acetabular edge. Contact pressure in this area could contribute to femoral head avascular necrosis by reducing flow in femoral head blood vessels. The contact pressure we simulated can plausibly account for both the therapeutic effects and main adverse effect of abduction harness treatment for developmental dysplasia of the hip. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Behzad Vafaeian
- Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, 9211 - 116 Street, Edmonton, Alberta, T6G 1H9, Canada
| | - Samer Adeeb
- Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, 9211 - 116 Street, Edmonton, Alberta, T6G 1H9, Canada
| | - Marwan El-Rich
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Sukhdeep K Dulai
- Department of Surgery and Stollery Children's Hospital, University of Alberta, 2C3.46 WMC, 8440 - 112 Street, Edmonton, Alberta, T6G 2B7, Canada
| | - Jacob L Jaremko
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, Alberta, T6G 2B7, Canada
| |
Collapse
|
26
|
Utilizing Atlas-Based Modeling to Predict Knee Joint Cartilage Degeneration: Data from the Osteoarthritis Initiative. Ann Biomed Eng 2018; 47:813-825. [DOI: 10.1007/s10439-018-02184-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
|
27
|
Vafaeian B, Adeeb S, El-Rich M, Zonoobi D, Hareendranathan AR, Jaremko JL. Hip Joint Contact Pressure Distribution During Pavlik Harness Treatment of an Infant Hip: A Patient-Specific Finite Element Model. J Biomech Eng 2018; 140:2677753. [PMID: 29715363 DOI: 10.1115/1.4039827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Indexed: 11/08/2022]
Abstract
Developmental dysplasia of the hip (DDH) in infants under 6 months of age is typically treated by the Pavlik harness (PH). During successful PH treatment, a subluxed/dislocated hip is spontaneously reduced into the acetabulum, and DDH undergoes self-correction. PH treatment may fail due to avascular necrosis (AVN) of the femoral head. An improved understanding of mechanical factors accounting for the success/failure of PH treatment may arise from investigating articular cartilage contact pressure (CCP) within a hip during treatment. In this study, CCP in a cartilaginous infant hip was investigated through patient-specific finite element (FE) modeling. We simulated CCP of the hip equilibrated at 90 deg flexion at abduction angles of 40 deg, 60 deg, and 80 deg. We found that CCP was predominantly distributed on the anterior and posterior acetabulum, leaving the superior acetabulum (mainly superolateral) unloaded. From a mechanobiological perspective, hypothesizing that excessive pressure inhibits growth, our results qualitatively predicted increased obliquity and deepening of the acetabulum under such CCP distribution. This is the desired and observed therapeutic effect in successful PH treatment. The results also demonstrated increase in CCP as abduction increased. In particular, the simulation predicted large magnitude and concentrated CCP on the posterior wall of the acetabulum and the adjacent lateral femoral head at extreme abduction (80 deg). This CCP on lateral femoral head may reduce blood flow in femoral head vessels and contribute to AVN. Hence, this study provides insight into biomechanical factors potentially responsible for PH treatment success and complications.
Collapse
Affiliation(s)
- Behzad Vafaeian
- Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, AB T6G 1H9, Canada e-mail:
| | - Samer Adeeb
- Associate Professor Department of Civil and Environmental Engineering, University of Alberta, 7-203 Donadeo Innovation Centre for Engineering, , Edmonton, AB T6G 1H9, Canada e-mail:
| | - Marwan El-Rich
- Associate Professor Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE e-mail:
| | - Dornoosh Zonoobi
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, AB T6G 2B7, Canada e-mail:
| | - Abhilash R Hareendranathan
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, AB T6G 2B7, Canada e-mail:
| | - Jacob L Jaremko
- Assistant Professor Department of Radiology and Diagnostic Imaging, University of Alberta, 2A2.41 WMC, 8440-112 Street, Edmonton, AB T6G 2B7, Canada e-mail:
| |
Collapse
|
28
|
Abstract
The principal goal of the FEBio project is to provide an advanced finite element tool for the biomechanics and biophysics communities that allows researchers to model mechanics, transport, and electrokinetic phenomena for biological systems accurately and efficiently. In addition, because FEBio is geared toward the research community, the code is designed such that new features can be added easily, thus making it an ideal tool for testing novel computational methods. Finally, because the success of a code is determined by its user base, integral goals of the FEBio project have been to offer support and outreach to our community; to provide mechanisms for dissemination of results, models, and data; and to encourage interaction between users. This review presents the history of the FEBio project, from its initial developments through its current funding period. We also present a glimpse into the future of FEBio.
Collapse
Affiliation(s)
- Steve A Maas
- Department of Bioengineering and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112;
| | - Gerard A Ateshian
- Department of Mechanical Engineering and Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Jeffrey A Weiss
- Department of Bioengineering and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112; .,Department of Orthopedics, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
29
|
Peters AE, Akhtar R, Comerford EJ, Bates KT. Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review. PeerJ 2018; 6:e4298. [PMID: 29379690 PMCID: PMC5787350 DOI: 10.7717/peerj.4298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/08/2018] [Indexed: 02/03/2023] Open
Abstract
Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element (FE) computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis (OA). As a result, significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing linear elastic material property data for human tibiofemoral joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model tibiofemoral joint mechanical behaviour through FE modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fuelled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result, there now exists an extremely broad range of published values for human tibiofemoral joint tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and OA is limited. It is therefore currently challenging to construct FE models of the knee that are truly representative of a specific age or disease-state. Consequently, recent tibiofemoral joint FE models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model (1) young and old and (2) healthy and OA human tibiofemoral joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which FE models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states.
Collapse
Affiliation(s)
- Abby E. Peters
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Eithne J. Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Karl T. Bates
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Marouane H, Shirazi-Adl A, Adouni M. 3D active-passive response of human knee joint in gait is markedly altered when simulated as a planar 2D joint. Biomech Model Mechanobiol 2016; 16:693-703. [DOI: 10.1007/s10237-016-0846-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/14/2016] [Indexed: 12/26/2022]
|
31
|
Naghibi Beidokhti H, Janssen D, Khoshgoftar M, Sprengers A, Perdahcioglu ES, Van den Boogaard T, Verdonschot N. A comparison between dynamic implicit and explicit finite element simulations of the native knee joint. Med Eng Phys 2016; 38:1123-30. [DOI: 10.1016/j.medengphy.2016.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 05/09/2016] [Accepted: 06/03/2016] [Indexed: 01/28/2023]
|
32
|
Manzano S, Manzano R, Doblaré M, Doweidar MH. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: a computational analysis. J R Soc Interface 2015; 12:20141090. [PMID: 25392400 DOI: 10.1098/rsif.2014.1090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration.
Collapse
Affiliation(s)
- Sara Manzano
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Raquel Manzano
- LAGENBIO-I3A, Veterinary School, University of Zaragoza, Spain
| | - Manuel Doblaré
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Mohamed Hamdy Doweidar
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
33
|
Galbusera F, Freutel M, Dürselen L, D'Aiuto M, Croce D, Villa T, Sansone V, Innocenti B. Material models and properties in the finite element analysis of knee ligaments: a literature review. Front Bioeng Biotechnol 2014; 2:54. [PMID: 25478560 PMCID: PMC4235075 DOI: 10.3389/fbioe.2014.00054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
Knee ligaments are elastic bands of soft tissue with a complex microstructure and biomechanics, which are critical to determine the kinematics as well as the stress bearing behavior of the knee joint. Their correct implementation in terms of material models and properties is therefore necessary in the development of finite element models of the knee, which has been performed for decades for the investigation of both its basic biomechanics and the development of replacement implants and repair strategies for degenerative and traumatic pathologies. Indeed, a wide range of element types and material models has been used to represent knee ligaments, ranging from elastic unidimensional elements to complex hyperelastic three-dimensional structures with anatomically realistic shapes. This paper systematically reviews literature studies, which described finite element models of the knee, and summarizes the approaches, which have been used to model the ligaments highlighting their strengths and weaknesses.
Collapse
Affiliation(s)
| | - Maren Freutel
- Center of Musculoskeletal Research Ulm (ZMFU), Institute of Orthopedic Research and Biomechanics, Ulm University , Ulm , Germany
| | - Lutz Dürselen
- Center of Musculoskeletal Research Ulm (ZMFU), Institute of Orthopedic Research and Biomechanics, Ulm University , Ulm , Germany
| | - Marta D'Aiuto
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano , Milan , Italy
| | - Davide Croce
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano , Milan , Italy
| | - Tomaso Villa
- IRCCS Istituto Ortopedico Galeazzi , Milan , Italy ; Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano , Milan , Italy
| | - Valerio Sansone
- IRCCS Istituto Ortopedico Galeazzi , Milan , Italy ; Department of Orthopaedic, Università degli Studi di Milano , Milan , Italy
| | - Bernardo Innocenti
- BEAMS Department (Bio Electro and Mechanical Systems), École Polytechnique de Bruxelles, Université Libre de Bruxelles , Brussels , Belgium
| |
Collapse
|
34
|
Webber MJ, Khan OF, Sydlik SA, Tang BC, Langer R. A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng 2014; 43:641-56. [PMID: 25201605 DOI: 10.1007/s10439-014-1104-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022]
Abstract
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Matthew J Webber
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 76-661, Cambridge, MA, 02139, USA
| | | | | | | | | |
Collapse
|