1
|
Manea A, Baciut G, Baciut M, Pop D, Comsa DS, Buiga O, Trombitas V, Colosi H, Mitre I, Bordea R, Manole M, Lenghel M, Bran S, Onisor F. New Dental Implant with 3D Shock Absorbers and Tooth-Like Mobility-Prototype Development, Finite Element Analysis (FEA), and Mechanical Testing. MATERIALS 2019; 12:ma12203444. [PMID: 31640243 PMCID: PMC6829458 DOI: 10.3390/ma12203444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Background: Once inserted and osseointegrated, dental implants become ankylosed, which makes them immobile with respect to the alveolar bone. The present paper describes the development of a new and original implant design which replicates the 3D physiological mobility of natural teeth. The first phase of the test followed the resistance of the implant to mechanical stress as well as the behavior of the surrounding bone. Modifications to the design were made after the first set of results. In the second stage, mechanical tests in conjunction with finite element analysis were performed to test the improved implant design. Methods: In order to test the new concept, 6 titanium alloy (Ti6Al4V) implants were produced (milling). The implants were fitted into the dynamic testing device. The initial mobility was measured for each implant as well as their mobility after several test cycles. In the second stage, 10 implants with the modified design were produced. The testing protocol included mechanical testing and finite element analysis. Results: The initial testing protocol was applied almost entirely successfully. Premature fracturing of some implants and fitting blocks occurred and the testing protocol was readjusted. The issues in the initial test helped design the final testing protocol and the new implants with improved mechanical performance. Conclusion: The new prototype proved the efficiency of the concept. The initial tests pointed out the need for design improvement and the following tests validated the concept.
Collapse
Affiliation(s)
- Avram Manea
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Grigore Baciut
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Mihaela Baciut
- Department of Oral Rehabilitation, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Dumitru Pop
- Department of Mechanical Systems Engineering, Faculty of Machine Building, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
| | - Dan Sorin Comsa
- Department of Manufacturing Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
| | - Ovidiu Buiga
- Department of Mechanical Systems Engineering, Faculty of Machine Building, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
| | - Veronica Trombitas
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Horatiu Colosi
- Department of Medical Education, Faculty of Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Ileana Mitre
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Marius Manole
- Department of Prosthetics and Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Manuela Lenghel
- Department of Surgical specialties, Faculty of Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Simion Bran
- Department of Oral Rehabilitation, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Florin Onisor
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Rizzo P. A review on the latest advancements in the non-invasive evaluation/monitoring of dental and trans-femoral implants. Biomed Eng Lett 2019; 10:83-102. [PMID: 32175131 DOI: 10.1007/s13534-019-00126-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/05/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Dental implants and transcutaneous prostheses (trans-femoral implants) improve the quality of life of millions of people because they represent the optimal treatments to edentulism and amputation, respectively. The clinical procedures adopted by surgeons to insert these implants are well established. However, there is uncertainty on the outcomes of the post-operation recovery because of the uncertainty associated with the osseointegration process, which is defined as the direct, structural and functional contact between the living bone and the fixture. To guarantee the long-term survivability of dental or trans-femoral implants doctors sometimes implement non-invasive techniques to monitor and evaluate the progress of osseointegration. This may be done by measuring the stability of the fixture or by assessing the quality of the bone-fixture interface. In addition, care providers may need to quantify the structural integrity of the bone-implant system at various moments during the patients recovery. The accuracy of such non-invasive methods reduce recovery and rehabilitation time, and may increase the survival rate of the therapies with undisputable benefits for the patients. This paper provides a comprehensive review of clinically-approved and emerging non-invasive methods to evaluate/monitor the osseointegration of dental and orthopedic implants. A discussion about advantages and limitations of each method is provided based on the outcomes of the cases presented. The review on the emerging technologies covers the developments of the last decade, while the discussion about the clinically approved systems focuses mostly on the latest (2017-2018) findings. At last, the review also provides some suggestions for future researches and developments in the area of implant monitoring.
Collapse
Affiliation(s)
- Piervincenzo Rizzo
- Department of Civil and Environmental Engineering, University of Pittsburgh, 729 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
3
|
Kriging Surrogate Model for Resonance Frequency Analysis of Dental Implants by a Latin Hypercube-Based Finite Element Method. Appl Bionics Biomech 2019; 2019:3768695. [PMID: 31093299 PMCID: PMC6481145 DOI: 10.1155/2019/3768695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/03/2019] [Accepted: 03/13/2019] [Indexed: 11/18/2022] Open
Abstract
The dental implantation in clinical operations often encounters difficulties and challenges of failure in osseointegration, bone formulation, and remodeling. The resonance frequency (RF) can effectively describe the stability of the implant in physical experiments or numerical simulations. However, the exact relationship between the design variables of dental implants and RF of the system is correlated, complicated, and dependent. In this study, an appropriate mathematical model is proposed to evaluate and predict the implant stability and performance. The model has merits not only in the prediction reliability and accuracy but also in the compatibility and flexibility, in both experimental data and numerical simulation results. The Kriging surrogate model is proposed to present the numerical relationship between RF and material parameters of dental implants. The Latin Hypercube (LH) sampling method as a competent and sophisticated method is applied and combined with the finite element method (FEM). The methods developed in this paper provide helpful guidance for designers and researchers in the implantation design and surgical plans.
Collapse
|
4
|
Rittel D, Dorogoy A, Haïat G, Shemtov-Yona K. Resonant frequency analysis of dental implants. Med Eng Phys 2019; 66:65-74. [PMID: 30837120 DOI: 10.1016/j.medengphy.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/14/2018] [Accepted: 02/17/2019] [Indexed: 12/29/2022]
Abstract
Dental implant stability influences the decision on the determination of the duration between implant insertion and loading. This work investigates the resonant frequency analysis by means of a numerical model. The investigation is done numerically through the determination of the eigenfrequencies and performing steady state response analyses using a commercial finite element package. A peri-implant interface, of simultaneously varying stiffness, density and layer thickness is introduced in the numerical 3D model in order to probe the sensitivity of the eigenfrequencies and steady state response to an evolving weakened layer, in an attempt to identify the bone reconstruction around the implant. For the first two modes, the resonant frequency is somewhat insensitive to the healing process, unless the weakened layer is rather large and compliant, like in the very early stages of the implantation. A "Normalized Healing Factor" is devised in the spirit of the Implant Stability Quotient, which can identify the healing process especially at the early stages after implantation. The sensitivity of the resonant frequency analysis to changes of mechanical properties of periprosthetic bone tissue seems relatively weak. Another indicator considering the amplitude as well as the resonance frequency might be more adapted to bone healing estimations. However, these results need to be verified experimentally as well as clinically.
Collapse
Affiliation(s)
- D Rittel
- Faculty of Mechanical Engineering, Technion, 32000 Haifa, Israel.
| | - A Dorogoy
- Faculty of Mechanical Engineering, Technion, 32000 Haifa, Israel
| | - G Haïat
- CNRS, Laboratoire Modélisation et Simulation Multi-échelle, UMR CNRS 8202, 94010 Créteil Cedex, France
| | - K Shemtov-Yona
- Faculty of Mechanical Engineering, Technion, 32000 Haifa, Israel
| |
Collapse
|
5
|
Chang Y, Tambe AA, Maeda Y, Wada M, Gonda T. Finite element analysis of dental implants with validation: to what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a validation process. Int J Implant Dent 2018. [PMID: 29516219 PMCID: PMC5842167 DOI: 10.1186/s40729-018-0119-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A literature review of finite element analysis (FEA) studies of dental implants with their model validation process was performed to establish the criteria for evaluating validation methods with respect to their similarity to biological behavior. An electronic literature search of PubMed was conducted up to January 2017 using the Medical Subject Headings “dental implants” and “finite element analysis.” After accessing the full texts, the context of each article was searched using the words “valid” and “validation” and articles in which these words appeared were read to determine whether they met the inclusion criteria for the review. Of 601 articles published from 1997 to 2016, 48 that met the eligibility criteria were selected. The articles were categorized according to their validation method as follows: in vivo experiments in humans (n = 1) and other animals (n = 3), model experiments (n = 32), others’ clinical data and past literature (n = 9), and other software (n = 2). Validation techniques with a high level of sufficiency and efficiency are still rare in FEA studies of dental implants. High-level validation, especially using in vivo experiments tied to an accurate finite element method, needs to become an established part of FEA studies. The recognition of a validation process should be considered when judging the practicality of an FEA study.
Collapse
Affiliation(s)
- Yuanhan Chang
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Abhijit Anil Tambe
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Mumbai Agra Road, Panchwati, Nashik, Maharashtra, India
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Wada
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoya Gonda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Peng YT, Tseng CC, Du YC, Chen YN, Chang CH. A novel conversion method for radiographic guide into surgical guide. Clin Implant Dent Relat Res 2017; 19:447-457. [DOI: 10.1111/cid.12469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Yao-Te Peng
- Department of Biomedical Engineering; National Cheng Kung University; Tainan City Taiwan
- Metal Industries Research & Development Centre; Kaohsiung City Taiwan
| | - Chung-Chih Tseng
- Department of Dentistry; Zuoying Branch of Kaohsiung Armed Forces General Hospital; Kaohsiung City Taiwan
| | - Yi-Chun Du
- Department of Electrical Engineering; Southern Taiwan University of Science and Technology; Tainan City Taiwan
| | - Yen-Nien Chen
- Department of Biomedical Engineering; National Cheng Kung University; Tainan City Taiwan
| | - Chih-Han Chang
- Department of Biomedical Engineering; National Cheng Kung University; Tainan City Taiwan
| |
Collapse
|
7
|
Shibata Y, Tanimoto Y, Maruyama N, Nagakura M. A review of improved fixation methods for dental implants. Part II: Biomechanical integrity at bone–implant interface. J Prosthodont Res 2015; 59:84-95. [DOI: 10.1016/j.jpor.2015.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/01/2015] [Accepted: 01/20/2015] [Indexed: 10/23/2022]
|