1
|
Goggins KA, Thompson TJ, Lessel CE, Kelly EA, O'Hara DEL, Eger TR. The effects of standing foot-transmitted vibration on self-reported discomfort ratings. Work 2024; 78:153-165. [PMID: 38640185 DOI: 10.3233/wor-230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Occupational foot-transmitted vibration (FTV) exposure is common in industries like mining, construction, and agriculture, often leading to acute and chronic injuries. Vibration assessments require technical expertise and equipment which can be costly for employers to perform. Alternatively, researchers have observed that self-reported discomfort can be used as an effective indicator of injury risk. OBJECTIVE This study aimed to investigate the effect of standing FTV exposure on self-reported ratings of discomfort, and whether these subjective ratings differed by body area and exposure frequency. METHODS Participants (n = 30) were randomly exposed to standing FTV at six frequencies (25, 30, 35, 40, 45, and 50 Hz) for 20-45 seconds. Following each exposure, participants rated discomfort on a scale of 0-9 in four body areas: head and neck (HN), upper body (UB), lower body (LB), and total body. RESULTS Results indicated that participants experienced the most discomfort in the LB at higher frequencies (p < 0.001), consistent with the resonance of foot structures. The HN discomfort tended to decrease as the exposure frequency increased, although not statistically significant (p > 0.0167). The UB discomfort remained relatively low across all frequencies. CONCLUSIONS The study suggests a potential connection between resonant frequencies and discomfort, potentially indicating injury risk. Although self-reported discomfort is insufficient for directly assessing injury risk from FTV, it provides a simple method for monitoring potential musculoskeletal risks related to vibration exposure at resonant frequencies. While professional vibration assessment remains necessary, self-reported discomfort may act as an early indicated of vibration-induced injuries, aiding in implementing mitigation strategies.
Collapse
Affiliation(s)
- Katie A Goggins
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
| | - Taryn J Thompson
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
- School of Natural Sciences, Laurentian University, Greater Sudbury ON, Canada
| | - Courtney E Lessel
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
| | - Elizabeth A Kelly
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
- Bharti School of Engineering, Laurentian University, Greater Sudbury ON, Canada
| | - Dawson E L O'Hara
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
- Bharti School of Engineering, Laurentian University, Greater Sudbury ON, Canada
| | - Tammy R Eger
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
- Office of Research Services, Laurentian University, Greater Sudbury, ON, Canada
| |
Collapse
|
2
|
Muanjai P, Haas C, Sies W, Mittag U, Zange J, Schönau E, Duran I, Kamandulis S, Rittweger J. Effect of Whole-body Vibration frequency on muscle tensile state during graded plantar flexor isometric contractions. J Exerc Sci Fit 2023; 21:405-415. [PMID: 37965131 PMCID: PMC10641229 DOI: 10.1016/j.jesf.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Background Acute physiological and biomechanical alterations have been reported following whole-body vibration (WBV). Stiffening of muscles has only been anecdotally reported in response to WBV. Accordingly, this study investigated active plantar flexor muscle stiffness in response to a single WBV bout at four mechanical vibration frequencies. Methods Thirteen healthy adults (37.1 ± 14.4 years old) randomly received WBV in 4 different frequencies (6, 12, 24, and 0 Hz control) for 5 min. Shear wave speed (SWS) in longitudinal and transverse projections, architecture, and electric muscle activity were recorded in the medial gastrocnemius (MG) and soleus (SOL) muscle during graded plantar flexor contraction. Subjective rating of perceived muscle stiffness was assessed via Likert-scale. Results SWS of the MG at rest was enhanced in response to 5 min of 24 Hz WBV (p = 0.025), while a small reduction in SOL SWS was found during contraction (p = 0.005) in the longitudinal view. Subjective stiffness rating was increased following 12 Hz intervention. After 24 Hz WBV, pennation angle for MG was decreased (p = 0.011) during contraction. As a secondary finding, plantar flexor strength was significantly increased with each visit, which, however, did not affect the study's main outcome because of balanced sequence allocation. Conclusion SWS effects were solely limited to 24 Hz mechanical vibration and in the longitudinal projection. The observed effects are compatible with an interpretation by post-activation potentiation, warm-up, and force-distribution within the triceps surae muscles following 5 min WBV. The outcome may suggest SWS as a useful tool for assessing acute changes in muscle stiffness.
Collapse
Affiliation(s)
- Pornpimol Muanjai
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand
- Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand
| | - Chris Haas
- University of Texas Medical Branch, Galveston, TX, USA
| | - Wolfram Sies
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Uwe Mittag
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Eckhard Schönau
- Center of Prevention and Rehabilitation, Cologne University Hospital and Medical Faculty, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Ibrahim Duran
- Center of Prevention and Rehabilitation, Cologne University Hospital and Medical Faculty, Germany
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Inês Gonzáles A, Lavarda do Nascimento G, da Silva A, Bernardo-Filho M, da Cunha de Sá-Caputo D, Sonza A. Whole-body vibration exercise in the management of cardiovascular diseases: A systematic review. J Bodyw Mov Ther 2023; 36:20-29. [PMID: 37949560 DOI: 10.1016/j.jbmt.2023.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/23/2023] [Accepted: 04/12/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are an important public health problem, representing about 45% of deaths in the world. Its management is linked to medications, changes in lifestyle, and physical exercise, with the whole-body vibration exercises (WBV) being a promising therapeutic resource. This study aims to investigate the effects of WBV in isolation or associated with other types of exercises in the management of CVDs. METHODS A systematic review following the PRISMA guidelines and registered on the PROSPERO platform was carried out. The search took place in the databases PubMed, Cochrane, PEDro, Lilacs, and Science Direct, from the beginning of the databases until January 2021. Descriptors related to WBV and CVD were used. The selected studies were assessed for quality, risk of bias, and level of evidence. RESULTS In all, 84 studies were identified, and of these, three were included. The intervention protocols used were analyzed, in addition to the effects of WBV on hemodynamic, cardiovascular, vascular/arterial, and muscle parameters. CONCLUSION The use of different WBV protocols, in isolation, in the improvement of the parameters mentioned above in individuals with CVD is plausible, with significant responses acutely or chronically and can be considered as a safe and effective training resource.
Collapse
Affiliation(s)
- Ana Inês Gonzáles
- Laboratory of Development and Postural Control (LADESCOP), Center of Health Sciences and Sport, Santa Catarina State University (UDESC), Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil; Post-graduate Program in Human Movement Sciences, Center of Health Sciences and Sport, Santa Catarina State University, Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil
| | - Gabriella Lavarda do Nascimento
- Laboratory of Development and Postural Control (LADESCOP), Center of Health Sciences and Sport, Santa Catarina State University (UDESC), Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil; Post-graduate Program in Human Movement Sciences, Center of Health Sciences and Sport, Santa Catarina State University, Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil
| | - Amanda da Silva
- Laboratory of Development and Postural Control (LADESCOP), Center of Health Sciences and Sport, Santa Catarina State University (UDESC), Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil; Post-graduate Program in Human Movement Sciences, Center of Health Sciences and Sport, Santa Catarina State University, Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil
| | - Mario Bernardo-Filho
- Laboratory of Mechanical Vibrations and Integrative Practices - LAVIMPI, Department of Biophysics and Biometrics, Roberto Alcântara Gomes Biology Institute and Piquet Carneiro Polyclinic, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20950-003, Brazil; Post-graduate Program in Clinical and Experimental Pathophysiology, State University of Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil
| | - Danúbia da Cunha de Sá-Caputo
- Laboratory of Mechanical Vibrations and Integrative Practices - LAVIMPI, Department of Biophysics and Biometrics, Roberto Alcântara Gomes Biology Institute and Piquet Carneiro Polyclinic, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20950-003, Brazil; Post-graduate Program in Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, 20.551-030, Brazil
| | - Anelise Sonza
- Laboratory of Development and Postural Control (LADESCOP), Center of Health Sciences and Sport, Santa Catarina State University (UDESC), Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil; Post-graduate Program in Human Movement Sciences, Center of Health Sciences and Sport, Santa Catarina State University, Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil; Post-graduate Program in Physical Therapy, Center of Health Sciences and Sport, Santa Catarina State University, Rua Pascoal Simone, 358- Coqueiros, Florianópolis, SC, 88080-350, Brazil.
| |
Collapse
|
4
|
Wersényi G. Perception Accuracy of a Multi-Channel Tactile Feedback System for Assistive Technology. SENSORS (BASEL, SWITZERLAND) 2022; 22:8962. [PMID: 36433558 PMCID: PMC9695395 DOI: 10.3390/s22228962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Assistive technology uses multi-modal feedback devices, focusing on the visual, auditory, and haptic modalities. Tactile devices provide additional information via touch sense. Perception accuracy of vibrations depends on the spectral and temporal attributes of the signal, as well as on the body parts they are attached to. The widespread use of AR/VR devices, wearables, and gaming interfaces requires information about the usability of feedback devices. This paper presents results of an experiment using an 8-channel tactile feedback system with vibrators placed on the wrists, arms, ankles, and forehead. Different vibration patterns were designed and presented using sinusoidal frequency bursts on 2, 4, and 8 channels. In total, 27 subjects reported their sensation formally and informally on questionnaires. Results indicate that 2 and 4 channels could be used simultaneously with high accuracy, and the transducers' optimal placement (best sensitivity) is on the wrists, followed by the ankles. Arm and head positions were inferior and generally inadequate for signal presentation. For optimal performance, signal length should exceed 500 ms. Furthermore, the amplitude level and temporal pattern of the presented signals have to be used for carrying information rather than the frequency of the vibration.
Collapse
Affiliation(s)
- György Wersényi
- Department of Telecommunications, Széchenyi István University, H-9026 Gyor, Hungary
| |
Collapse
|
5
|
Batouli-Santos D, Reis-Silva A, Guimarães-Lourenço G, Mendonça-Guimarães R, Moreira-Marconi E, Sonza A, Bernardo-Filho M, Sá-Caputo D. Acute effect of whole body-vibration exercise and osteopathic manipulative treatment on the heart rate variability in individuals with metabolic syndrome: Randomized cross-study protocol. INT J OSTEOPATH MED 2022. [DOI: 10.1016/j.ijosm.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Reporting Guidelines for Whole-Body Vibration Studies in Humans, Animals and Cell Cultures: A Consensus Statement from an International Group of Experts. BIOLOGY 2021; 10:biology10100965. [PMID: 34681065 PMCID: PMC8533415 DOI: 10.3390/biology10100965] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Whole-body vibration (WBV) is an exercise or treatment method used in sports, physiotherapy, and rehabilitation. During WBV, people sit, stand, or exercise on a platform that generates vibrations. These vibrations generally occur between 20 and 60 times per second and have a magnitude of one or several millimeters. Research is focused on the effects of WBV on, for instance, physical and cognitive functions as well as the underlying mechanisms that may explain the effects. Research is not only done in humans but in animals and cell cultures as well. It is important to report the studies correctly, completely, and consistently. This way, researchers can interpret and compare each other’s studies, and data of different studies can be combined and analyzed together. To serve this goal, we developed new guidelines on how to report on WBV studies. The guidelines include checklists for human and animal/cell culture research, explanations, and examples of how to report. We included information about devices, vibrations, administration, general protocol, and subjects. The guidelines are WBV-specific and can be used by researchers alongside general guidelines for specific research designs. Abstract Whole-body vibration (WBV) is an exercise modality or treatment/prophylaxis method in which subjects (humans, animals, or cells) are exposed to mechanical vibrations through a vibrating platform or device. The vibrations are defined by their direction, frequency, magnitude, duration, and the number of daily bouts. Subjects can be exposed while performing exercises, hold postures, sitting, or lying down. Worldwide, WBV has attracted significant attention, and the number of studies is rising. To interpret, compare, and aggregate studies, the correct, complete, and consistent reporting of WBV-specific data (WBV parameters) is critical. Specific reporting guidelines aid in accomplishing this goal. There was a need to expand existing guidelines because of continuous developments in the field of WBV research, including but not limited to new outcome measures regarding brain function and cognition, modified designs of WBV platforms and attachments (e.g., mounting a chair on a platform), and comparisons of animal and cell culture studies with human studies. Based on Delphi studies among experts and using EQUATOR recommendations, we have developed extended reporting guidelines with checklists for human and animal/cell culture research, including information on devices, vibrations, administration, general protocol, and subjects. In addition, we provide explanations and examples of how to report. These new reporting guidelines are specific to WBV variables and do not target research designs in general. Researchers are encouraged to use the new WBV guidelines in addition to general design-specific guidelines.
Collapse
|
7
|
Biodynamic Responses to Whole-Body Vibration Training: A Systematic Review. J Appl Biomech 2021; 37:494-507. [PMID: 34530400 DOI: 10.1123/jab.2020-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/25/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
In recent years, whole-body vibration (WBV) training has received an increasing interest in the sports and medical fields. However, there has been inconsistency among several studies regarding the effect of WBV training on the human body, which is partly due to the lack of the existence of guidelines for using WBV training machines. To understand the effect of WBV training on the human body and build the needed regulations, it is essential first to understand the biodynamic responses to vibration which represent how vibration is transmitted to and through the human body. The purpose of this study is to systematically review previous studies that measured biodynamic responses when using WBV training machines to highlight inconsistencies in their results and provide possible reasons for them. An extensive literature search was performed on the SCOPUS database to obtain relevant studies. One hundred and fifty-six potentially relevant studies were obtained but after further screening, 23 papers from 2007 to 2020 met inclusion criteria and were included in the study. The papers were analysed with respect to acceleration, transmissibility, interface force, and apparent mass during different vibration settings, body posture, age, and sex. Results and conflicts among studies were highlighted and possible explanations for the inconsistency were provided.
Collapse
|
8
|
Sonza A, Sanada LS, de Oliveira LR, Bernardo-Filho M, de Sá-Caputo DDC, Zaro MA, Achaval M. Whole-body vibration mediates mechanical hypersensitivity through Aβ-fiber and C-fiber thermal sensation in a chronic pain model. Exp Biol Med (Maywood) 2021; 246:1210-1218. [PMID: 33593110 PMCID: PMC8142106 DOI: 10.1177/1535370221991147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Whole-body vibration (WBV), which is widely used as a type of exercise, involves the use of vibratory stimuli and it is used for rehabilitation and sports performance programmes. This study aimed to investigate the effect of WBV treatment in a chronic pain model after 10 WBV sessions. An animal model (chronic pain) was applied in 60 male Wistar rats (±180 g, 12 weeks old) and the animals were treated with low intensity exercise (treadmill), WBV (vibrating platform), and a combined treatment involving both. The controls on the platform were set to a frequency of 42 Hz with 2 mm peak-to-peak displacement, g ≈ 7, in a spiral mode. Before and after the vibration exposure, sensitivity was determined. Aβ-fibers-mediated mechanical sensitivity thresholds (touch-pressure) were measured using a pressure meter. C-fibers-mediated thermal perception thresholds (hot pain) were measured with a hot plate. After each session, WBV influenced the discharge of skin touch-pressure receptors, reducing mechanical sensitivity in the WBV groups (P < 0.05). Comparing the conditions "before vs. after", thermal perception thresholds (hot pain) started to decrease significantly after the third WBV session (P < 0.05). WBV decreases mechanical hyperalgesia after all sessions and thermal sensitivity after the third session with the use of WBV.
Collapse
Affiliation(s)
- Anelise Sonza
- Post-graduate Program in Physiotherapy, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis 88080-350, Brazil
- Post-graduate Program in Human Movement Sciences, UDESC, Florianópolis 88080-350, Brazil
- Post-graduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| | - Luciana Sayuri Sanada
- Post-graduate Program in Physiotherapy, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis 88080-350, Brazil
| | - Luiza Raulino de Oliveira
- Post-graduate Program in Physiotherapy, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis 88080-350, Brazil
| | - Mario Bernardo-Filho
- Laboratório de Vibrações Mecânicas, Policlínica Piquet Carneiro, Instituto de Biología Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Danúbia da Cunha de Sá-Caputo
- Laboratório de Vibrações Mecânicas, Policlínica Piquet Carneiro, Instituto de Biología Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Milton Antonio Zaro
- Post-graduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| | - Matilde Achaval
- Post-graduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| |
Collapse
|
9
|
Adams JA, Uryash A, Lopez JR, Sackner MA. The Endothelium as a Therapeutic Target in Diabetes: A Narrative Review and Perspective. Front Physiol 2021; 12:638491. [PMID: 33708143 PMCID: PMC7940370 DOI: 10.3389/fphys.2021.638491] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes has reached worldwide epidemic proportions, and threatens to be a significant economic burden to both patients and healthcare systems, and an important driver of cardiovascular mortality and morbidity. Improvement in lifestyle interventions (which includes increase in physical activity via exercise) can reduce diabetes and cardiovascular disease mortality and morbidity. Encouraging a population to increase physical activity and exercise is not a simple feat particularly in individuals with co-morbidities (obesity, heart disease, stroke, peripheral vascular disease, and those with cognitive and physical limitations). Translation of the physiological benefits of exercise within that vulnerable population would be an important step for improving physical activity goals and a stopgap measure to exercise. In large part many of the beneficial effects of exercise are due to the introduction of pulsatile shear stress (PSS) to the vascular endothelium. PSS is a well-known stimulus for endothelial homeostasis, and induction of a myriad of pathways which include vasoreactivity, paracrine/endocrine function, fibrinolysis, inflammation, barrier function, and vessel growth and formation. The endothelial cell mediates the balance between vasoconstriction and relaxation via the major vasodilator endothelial derived nitric oxide (eNO). eNO is critical for vasorelaxation, increasing blood flow, and an important signaling molecule that downregulates the inflammatory cascade. A salient feature of diabetes, is endothelial dysfunction which is characterized by a reduction of the bioavailability of vasodilators, particularly nitric oxide (NO). Cellular derangements in diabetes are also related to dysregulation in Ca2+ handling with increased intracellular Ca2+overload, and oxidative stress. PSS increases eNO bioavailability, reduces inflammatory phenotype, decreases intracellular Ca2+ overload, and increases antioxidant capacity. This narrative review and perspective will outline four methods to non-invasively increase PSS; Exercise (the prototype for increasing PSS), Enhanced External Counterpulsation (EECP), Whole Body Vibration (WBV), Passive Simulated Jogging and its predicate device Whole Body Periodic Acceleration, and will discuss current knowledge on their use in diabetes.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Marvin A Sackner
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
10
|
Chuang LR, Yang WW, Chang PL, Chen VCF, Liu C, Shiang TY. Managing Vibration Training Safety by Using Knee Flexion Angle and Rating Perceived Exertion. SENSORS 2021; 21:s21041158. [PMID: 33562177 PMCID: PMC7915332 DOI: 10.3390/s21041158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
Whole-body vibration (WBV) is commonly applied in exercise and rehabilitation and its safety issues have been a major concern. Vibration measured using accelerometers can be used to further analyze the vibration transmissibility. Optimal bending angles and rating of perceived exertion (RPE) evaluations have not been sufficiently explored to mitigate the adverse effect. Therefore, the aims of this study were to investigate the effect of various knee flexion angles on the transmissibility to the head and knee, the RPE during WBV exposure, and the link between the transmissibility to the head and the RPE. Sixteen participants randomly performed static squats with knee flexion angles of 90, 110, 130, and 150 degrees on a WBV platform. Three accelerometers were fixed on the head, knee, and center of the vibration platform to provide data of platform-to-head and platform-to-knee transmissibilities. The results showed that the flexion angle of 110 degrees induced the lowest platform-to-head transmissibility and the lowest RPE (p < 0.01). A positive correlation between RPE and the platform-to-head transmissibility was observed. This study concluded that a knee flexion of about 110 degrees is most appropriate for reducing vibration transmissibility. The reported RPE could be used to reflect the vibration impact to the head.
Collapse
Affiliation(s)
- Long-Ren Chuang
- Department of Combat Sports and Chinese Martial Arts, Chinese Culture University, Taipei 11114, Taiwan; (L.-R.C.); (P.-L.C.)
| | - Wen-Wen Yang
- Department of Sports Medicine, China Medical University, Taichung 406040, Taiwan;
| | - Po-Ling Chang
- Department of Combat Sports and Chinese Martial Arts, Chinese Culture University, Taipei 11114, Taiwan; (L.-R.C.); (P.-L.C.)
| | | | - Chiang Liu
- Graduate Institute of Sports Equipment Technology, University of Taipei, Taipei 11153, Taiwan;
- Center for Sport Science and Technology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Tzyy-Yuang Shiang
- Department of Athletic Performance, National Taiwan Normal University, Taipei 11677, Taiwan
- Correspondence: ; Tel.: +886-2-7749-6869
| |
Collapse
|
11
|
McErlain-Naylor SA, King MA, Allen SJ. Surface acceleration transmission during drop landings in humans. J Biomech 2021; 118:110269. [PMID: 33556890 DOI: 10.1016/j.jbiomech.2021.110269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to quantify the magnitude and frequency content of surface-measured accelerations at each major human body segment from foot to head during impact landings. Twelve males performed two single leg drop landings from each of 0.15 m, 0.30 m, and 0.45 m. Triaxial accelerometers (2000 Hz) were positioned over the: first metatarsophalangeal joint; distal anteromedial tibia; superior to the medial femoral condyle; L5 vertebra; and C6 vertebra. Analysis of acceleration signal power spectral densities revealed two distinct components, 2-14 Hz and 14-58 Hz, which were assumed to correspond to time domain signal joint rotations and elastic wave tissue deformation, respectively. Between each accelerometer position from the metatarsophalangeal joint to the L5 vertebra, signals exhibited decreased peak acceleration, increased time to peak acceleration, and decreased power spectral density integral of both the 2-14 Hz and 14-58 Hz components, with no further attenuation beyond the L5 vertebra. This resulted in peak accelerations close to vital organs of less than 10% of those at the foot. Following landings from greater heights, peak accelerations measured distally were greater, as was attenuation prior to the L5 position. Active and passive mechanisms within the lower limb therefore contribute to progressive attenuation of accelerations, preventing excessive accelerations from reaching the torso and head, even when distal accelerations are large.
Collapse
Affiliation(s)
- S A McErlain-Naylor
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom; School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom.
| | - M A King
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - S J Allen
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
12
|
Apparent mass of the standing human body when using a whole-body vibration training machine: Effect of knee angle and input frequency. J Biomech 2019; 82:291-298. [DOI: 10.1016/j.jbiomech.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/13/2018] [Accepted: 11/01/2018] [Indexed: 12/30/2022]
|
13
|
Bergmann G, Kutzner I, Bender A, Dymke J, Trepczynski A, Duda GN, Felsenberg D, Damm P. Loading of the hip and knee joints during whole body vibration training. PLoS One 2018; 13:e0207014. [PMID: 30540775 PMCID: PMC6291191 DOI: 10.1371/journal.pone.0207014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
During whole body vibrations, the total contact force in knee and hip joints consists of a static component plus the vibration-induced dynamic component. In two different cohorts, these forces were measured with instrumented joint implants at different vibration frequencies and amplitudes. For three standing positions on two platforms, the dynamic forces were compared to the static forces, and the total forces were related to the peak forces during walking. A biomechanical model served for estimating muscle force increases from contact force increases. The median static forces were 122% to 168% (knee), resp. 93% to 141% (hip), of the body weight. The same accelerations produced higher dynamic forces for alternating than for parallel foot movements. The dynamic forces individually differed much between 5.3% to 27.5% of the static forces in the same positions. On the Powerplate, they were even close to zero in some subjects. The total forces were always below 79% of the forces during walking. The dynamic forces did not rise proportionally to platform accelerations. During stance (Galileo, 25 Hz, 2 mm), the damping of dynamic forces was only 8% between foot and knee but 54% between knee and hip. The estimated rises in muscle forces due to the vibrations were in the same ranges as the contact force increases. These rises were much smaller than the vibration-induced EMG increases, reported for the same platform accelerations. These small muscle force increases, along with the observation that the peak contact and muscle forces during vibrations remained far below those during walking, indicate that dynamic muscle force amplitudes cannot be the reason for positive effects of whole body vibrations on muscles, bone remodelling or arthritic joints. Positive effects of vibrations must be caused by factors other than raised forces amplitudes.
Collapse
Affiliation(s)
- Georg Bergmann
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Kutzner
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alwina Bender
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Dymke
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Adam Trepczynski
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Felsenberg
- Center for Muscle and Bone Research, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Damm
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Affiliation(s)
- Naser Nawayseh
- Mechanical Engineering Department, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
|
16
|
Lee J, Lee K, Song C. Determining the Posture and Vibration Frequency that Maximize Pelvic Floor Muscle Activity During Whole-Body Vibration. Med Sci Monit 2016; 22:4030-4036. [PMID: 27787476 PMCID: PMC5087668 DOI: 10.12659/msm.898011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to investigate the electromyogram (EMG) response of pelvic floor muscle (PFM) to whole-body vibration (WBV) while using different body posture and vibration frequencies. Material/Methods Thirteen healthy adults (7 men, 6 women) voluntarily participated in this cross-sectional study in which EMG data from PFM were collected in a total of 12 trials for each subject (4 body postures, 3 vibration frequencies). Pelvic floor EMG activity was recorded using an anal probe. The rating of perceived exertion (RPE) was assessed with a modified Borg scale. Results We found that vibration frequency, body posture, and muscle stimulated had a significant effect on the EMG response. The PFM had high activation at 12 Hz and 26 Hz (p<0.05). PFM activation significantly increased with knee flexion (p<0.05). The RPE significantly increased with increased frequency (p<0.05). Conclusions The knee flexion angle of 40° at 12 Hz frequency can be readily promoted in improving muscle activation during WBV, and exercise would be performed effectively. Based on the results of the present investigation, sports trainers and physiotherapists may be able to optimize PFM training programs involving WBV.
Collapse
Affiliation(s)
- Juhyun Lee
- Department of Physical Therapy, College of Health Science, Sahmyook University, Seoul, South Korea
| | - Kyeongjin Lee
- Department of Physical Therapy, College of Health Science, Sahmyook University, Seoul, South Korea
| | - Changho Song
- Department of Physical Therapy, College of Health Science, Sahmyook University, Seoul, South Korea
| |
Collapse
|