1
|
El-Gendy RS, El-Hamid ASA, Galhom AESA, Hassan NA, Ghoneim EM. Diagnostic dilemma of papilledema and pseudopapilledema. Int Ophthalmol 2024; 44:272. [PMID: 38916684 DOI: 10.1007/s10792-024-03215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Papilledema is the optic disc swelling caused by increased intracranial pressure (ICP) that can damage the optic nerve and cause subsequent vision loss. Pseudopapilledema refers to optic disc elevation without peripapillary fluid that can arise from several optic disc disorders, with optic disc drusen (ODD) being the most frequent cause. Occasionally, pseudopapilledema patients are mistakenly diagnosed as papilledema, leading to the possibility of unneeded procedures. We aim to thoroughly examine the most current evidence on papilledema and pseudopapilledema causes and several methods for distinguishing between both conditions. METHODS An extensive literature search was conducted on electronic databases including PubMed and google scholar using keywords that were relevant to the assessed pathologies. Data were collected and then summarized in comprehensive form. RESULTS Various techniques are employed to distinguish between papilledema and pseudopapilledema. These techniques include Fundus fluorescein angiography, optical coherence tomography, ultrasonography, and magnetic resonance imaging. Lumbar puncture and other invasive procedures may be needed if results are suspicious. CONCLUSION Papilledema is a sight-threatening condition that may lead to visual affection. Many disc conditions may mimic papilledema. Accordingly, differentiation between papilledema and pseudopailledema is crucial and can be conducted through many modalities.
Collapse
Affiliation(s)
| | | | | | - Nihal Adel Hassan
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ehab Mahmoud Ghoneim
- Department of Ophthalmology, Faculty of Medicine, PortSaid University, PortSaid, Egypt
| |
Collapse
|
2
|
Boraschi A, Hafner M, Spiegelberg A, Kurtcuoglu V. Influence of age on the relation between body position and noninvasively acquired intracranial pulse waves. Sci Rep 2024; 14:5493. [PMID: 38448614 PMCID: PMC10918064 DOI: 10.1038/s41598-024-55860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The capacitive measurement of the head's dielectric properties has been recently proposed as a noninvasive method for deriving surrogates of craniospinal compliance (CC), a parameter used in the evaluation of space-occupying neurological disorders. With the higher prevalence of such disorders in the older compared to the younger population, data on the head's dielectric properties of older healthy individuals would be of particularly high value before assessing pathologic changes. However, so far only measurements on young volunteers (< 30 years) were reported. In the present study, we have investigated the capacitively obtained electric signal known as W in older healthy individuals. Thirteen healthy subjects aged > 60 years were included in the study. W was acquired in the resting state (supine horizontal position), and during head-up and head-down tilting. AMP, the peak-to-valley amplitude of W related to cardiac action, was extracted from W. AMP was higher in this older cohort compared to the previously investigated younger one (0°: 5965 ± 1677 arbitrary units (au)). During head-up tilting, AMP decreased (+ 60°: 4446 ± 1620 au, P < 0.001), whereas it increased during head-down tilting (- 30°: 7600 ± 2123 au, P < 0.001), as also observed in the younger cohort. Our observation that AMP, a metric potentially reflective of CC, is higher in the older compared to the younger cohort aligns with the expected decrease of CC with age. Furthermore, the robustness of AMP is reinforced by the consistent relative changes observed during tilt testing in both cohorts.
Collapse
Affiliation(s)
- Andrea Boraschi
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Hafner
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Spiegelberg
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Yu A, Zhu M, Chen C, Li Y, Cui H, Liu S, Zhao Q. Implantable Flexible Sensors for Health Monitoring. Adv Healthc Mater 2024; 13:e2302460. [PMID: 37816513 DOI: 10.1002/adhm.202302460] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Flexible sensors, as a significant component of flexible electronics, have attracted great interest the realms of human-computer interaction and health monitoring due to their high conformability, adjustable sensitivity, and excellent durability. In comparison to wearable sensor-based in vitro health monitoring, the use of implantable flexible sensors (IFSs) for in vivo health monitoring offers more accurate and reliable vital sign information due to their ability to adapt and directly integrate with human tissue. IFSs show tremendous promise in the field of health monitoring, with unique advantages such as robust signal reading capabilities, lightweight design, flexibility, and biocompatibility. Herein, a review of IFSs for vital signs monitoring is detailly provided, highlighting the essential conditions for in vivo applications. As the prerequisites of IFSs, the stretchability and wireless self-powered properties of the sensor are discussed, with a special attention paid to the sensing materials which can maintain prominent biosafety (i.e., biocompatibility, biodegradability, bioresorbability). Furthermore, the applications of IFSs monitoring various parts of the body are described in detail, with a summary in brain monitoring, eye monitoring, and blood monitoring. Finally, the challenges as well as opportunities in the development of next-generation IFSs are presented.
Collapse
Affiliation(s)
- Aoxi Yu
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Mingye Zhu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Congkai Chen
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yang Li
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Haixia Cui
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Müller SJ, Henkes E, Gounis MJ, Felber S, Ganslandt O, Henkes H. Non-Invasive Intracranial Pressure Monitoring. J Clin Med 2023; 12:jcm12062209. [PMID: 36983213 PMCID: PMC10051320 DOI: 10.3390/jcm12062209] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
(1) Background: Intracranial pressure (ICP) monitoring plays a key role in the treatment of patients in intensive care units, as well as during long-term surgeries and interventions. The gold standard is invasive measurement and monitoring via ventricular drainage or a parenchymal probe. In recent decades, numerous methods for non-invasive measurement have been evaluated but none have become established in routine clinical practice. The aim of this study was to reflect on the current state of research and shed light on relevant techniques for future clinical application. (2) Methods: We performed a PubMed search for “non-invasive AND ICP AND (measurement OR monitoring)” and identified 306 results. On the basis of these search results, we conducted an in-depth source analysis to identify additional methods. Studies were analyzed for design, patient type (e.g., infants, adults, and shunt patients), statistical evaluation (correlation, accuracy, and reliability), number of included measurements, and statistical assessment of accuracy and reliability. (3) Results: MRI-ICP and two-depth Doppler showed the most potential (and were the most complex methods). Tympanic membrane temperature, diffuse correlation spectroscopy, natural resonance frequency, and retinal vein approaches were also promising. (4) Conclusions: To date, no convincing evidence supports the use of a particular method for non-invasive intracranial pressure measurement. However, many new approaches are under development.
Collapse
Affiliation(s)
- Sebastian Johannes Müller
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
- Correspondence: ; Tel.: +49-(0)711-278-34501
| | - Elina Henkes
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
| | - Matthew J. Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts, Worcester, MA 01655, USA
| | - Stephan Felber
- Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Stiftungsklinikum Mittelrhein, D-56068 Koblenz, Germany
| | - Oliver Ganslandt
- Neurochirurgische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
| | - Hans Henkes
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
- Medizinische Fakultät, Universität Duisburg-Essen, D-47057 Duisburg, Germany
| |
Collapse
|
5
|
Félix H, Oliveira ES. Non-Invasive Intracranial Pressure Monitoring and Its Applicability in Spaceflight. Aerosp Med Hum Perform 2022; 93:517-531. [DOI: 10.3357/amhp.5922.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: Neuro-ophthalmic findings collectively defined as Spaceflight-Associated Neuro-ocular Syndrome (SANS) are one of the leading health priorities in astronauts engaging in long duration spaceflight or prolonged microgravity exposure. Though multifactorial in etiology,
similarities to terrestrial idiopathic intracranial hypertension (IIH) suggest these changes may result from an increase or impairing in intracranial pressure (ICP). Finding a portable, accessible, and reliable method of monitoring ICP is, therefore, crucial in long duration spaceflight. A
review of recent literature was conducted on the biomedical literature search engine PubMed using the search term “non-invasive intracranial pressure”. Studies investigating accuracy of noninvasive and portable methods were assessed. The search retrieved different methods that
were subsequently grouped by approach and technique. The majority of publications included the use of ultrasound-based methods with variable accuracies. One of which, noninvasive ICP estimation by optical nerve sheath diameter measurement (nICP_ONSD), presented the highest statistical correlation
and prediction values to invasive ICP, with area under the curve (AUC) ranging from 0.75 to 0.964. One study even considers a combination of ONSD with transcranial Doppler (TCD) for an even higher performance. Other methods, such as near-infrared spectroscopy (NIRS), show positive and promising
results [good statistical correlation with invasive techniques when measuring cerebral perfusion pressure (CPP): r = 0.83]. However, for its accessibility, portability, and accuracy, ONSD seems to present itself as the up to date, most reliable, noninvasive ICP surrogate and a valuable spaceflight
asset.Félix H, Santos Oliveira E. Non-invasive intracranial pressure monitoring and its applicability in spaceflight. Aerosp Med Hum Perform. 2022; 93(6):517–531.
Collapse
|
6
|
Jacobsen HH, Jørstad ØK, Moe MC, Petrovski G, Pripp AH, Sandell T, Eide PK. Noninvasive Estimation of Pulsatile and Static Intracranial Pressure by Optical Coherence Tomography. Transl Vis Sci Technol 2022; 11:31. [PMID: 35050344 PMCID: PMC8787623 DOI: 10.1167/tvst.11.1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the ability of optical coherence tomography (OCT) to noninvasively estimate pulsatile and static intracranial pressure (ICP). Methods An OCT examination was performed in patients who underwent continuous overnight monitoring of the pulsatile and static ICP for diagnostic purpose. We included two patient groups, patients with idiopathic intracranial hypertension (IIH; n = 20) and patients with no verified cerebrospinal fluid disturbances (reference; n = 12). Several OCT parameters were acquired using spectral-domain OCT (RS-3000 Advance; NIDEK, Singapore). The ICP measurements were obtained using a parenchymal sensor (Codman ICP MicroSensor; Johnson & Johnson, Raynham, MA, USA). The pulsatile ICP was determined as the mean ICP wave amplitude (MWA), and the static ICP was determined as the mean ICP. Results The peripapillary Bruch's membrane angle (pBA) and the optic nerve head height (ONHH) differed between the IIH and reference groups and correlated with both MWA and mean ICP. Both OCT parameters predicted elevated MWA. Area under the curve and cutoffs were 0.82 (95% confidence interval [CI], 0.66–0.98) and -0.65° (sensitivity/specificity; 0.75/0.92) for pBA and 0.84 (95% CI, 0.70–0.99) and 405 µm (0.88/0.67) for ONHH. Adjusting for age and body mass index resulted in nonsignificant predictive values for mean ICP, whereas the predictive value for MWA remained significant. Conclusions This study provides evidence that the OCT parameters pBA and ONHH noninvasively can predict elevated pulsatile ICP, represented by the MWA. Translational Relevance OCT shows promise as a method for noninvasive estimation of ICP.
Collapse
Affiliation(s)
- Henrik Holvin Jacobsen
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Kalsnes Jørstad
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Ophthalmology, University of Split School of Medicine, Split, Croatia
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Tiril Sandell
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Department of Ophthalmology, Vestre Viken Hospital, Drammen, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
7
|
Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS 2020; 17:34. [PMID: 32375853 PMCID: PMC7201553 DOI: 10.1186/s12987-020-00195-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sixty years have passed since neurosurgeon Nils Lundberg presented his thesis about intracranial pressure (ICP) monitoring, which represents a milestone for its clinical introduction. Monitoring of ICP has since become a clinical routine worldwide, and today represents a cornerstone in surveillance of patients with acute brain injury or disease, and a diagnostic of individuals with chronic neurological disease. There is, however, controversy regarding indications, clinical usefulness and the clinical role of the various ICP scores. In this paper, we critically review limitations and weaknesses with the current ICP measurement approaches for invasive, less invasive and non-invasive ICP monitoring. While risk related to the invasiveness of ICP monitoring is extensively covered in the literature, we highlight other limitations in current ICP measurement technologies, including limited ICP source signal quality control, shifts and drifts in zero pressure reference level, affecting mean ICP scores and mean ICP-derived indices. Control of the quality of the ICP source signal is particularly important for non-invasive and less invasive ICP measurements. We conclude that we need more focus on mitigation of the current limitations of today's ICP modalities if we are to improve the clinical utility of ICP monitoring.
Collapse
Affiliation(s)
- Karen Brastad Evensen
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Jiang C, Li D, Xu F, Li Y, Liu C, Ta D. Numerical Evaluation of the Influence of Skull Heterogeneity on Transcranial Ultrasonic Focusing. Front Neurosci 2020; 14:317. [PMID: 32351351 PMCID: PMC7174677 DOI: 10.3389/fnins.2020.00317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
In transcranial penetration, ultrasound undergoes refraction, diffraction, multi-reflection, and mode conversion. These factors lead to phase aberration and waveform distortion, which impede the realization of transcranial ultrasonic imaging and therapy. Ray tracing has been used to correct the phase aberration and is computationally more efficient than traditional full-wave simulation. However, when ray tracing has been used for transcranial investigation, it has generally been on the premise that the skull medium is homogeneous. To find suitable homogeneity that balances computational speed and accuracy, the present work investigates how the focus deviates after phase-aberration compensation with ray tracing using time-reversal theory. The waveforms are synthetized with ray tracing for phase aberration, by which the properties of the skull bone are simplified for refraction calculation as those of either (i) the cortical bone or (ii) the mean of the entire skull bone, and the focusing accuracy is evaluated for each hypothesis. The propagation of ultrasound for transcranial focusing is simulated with the elastic model using the k-space pseudospectral method. Unlike the fluid model, the elastic model does not omit shear waves in the skull bones, and the influence of that omission is investigated, with the fluid model resulting in a focal deflection of 0.5 mm. The focusing deviations are huge when the properties of the skull bone are idealized with ray tracing as those of the mean of the entire skull bone. The focusing accuracy improves when the properties of the skull bone are idealized as those of the cortical bone. The results reveal minimal deviation (8.6, 3.9, and 3.2% in the three Cartesian coordinates) in the focal region and suggest that transcranial focusing deflections are caused mostly by ultrasonic refraction on the surface of the skull bone. A heterogeneous skull bone causes wave bending but minimal focusing deflection. The proposed simplification of a homogeneous skull bone is more accurate for transcranial ultrasonic path estimation and offers promising applications in transcranial ultrasonic focusing and imaging.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Dan Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Feng Xu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Ying Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Chengcheng Liu
- Institute of Acoustics, Tongji University, Shanghai, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China.,State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
| |
Collapse
|
9
|
M Imaduddin S, Fanelli A, Vonberg FW, Tasker RC, Heldt T. Pseudo-Bayesian Model-Based Noninvasive Intracranial Pressure Estimation and Tracking. IEEE Trans Biomed Eng 2019; 67:1604-1615. [PMID: 31535978 DOI: 10.1109/tbme.2019.2940929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE A noninvasive intracranial pressure (ICP) estimation method is proposed that incorporates a model-based approach within a probabilistic framework to mitigate the effects of data and modeling uncertainties. METHODS A first-order model of the cerebral vasculature relates measured arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) to ICP. The model is driven by the ABP waveform and is solved for a range of mean ICP values to predict the CBFV waveform. The resulting errors between measured and predicted CBFV are transformed into likelihoods for each candidate ICP in two steps. First, a baseline ICP estimate is established over five data windows of 20 beats by combining the likelihoods with a prior distribution of the ICP to yield an a posteriori distribution whose median is taken as the baseline ICP estimate. A single-state model of cerebral autoregulatory dynamics is then employed in subsequent data windows to track changes in the baseline by combining ICP estimates obtained with a uniform prior belief and model-predicted ICP. For each data window, the estimated model parameters are also used to determine the ICP pulse pressure. RESULTS On a dataset of thirteen pediatric patients with a variety of pathological conditions requiring invasive ICP monitoring, the method yielded for mean ICP estimation a bias (mean error) of 0.6 mmHg and a root-mean-squared error of 3.7 mmHg. CONCLUSION These performance characteristics are well within the acceptable range for clinical decision making. SIGNIFICANCE The method proposed here constitutes a significant step towards robust, continuous, patient-specific noninvasive ICP determination.
Collapse
|
10
|
Evensen KB, Paulat K, Prieur F, Holm S, Eide PK. Utility of the Tympanic Membrane Pressure Waveform for Non-invasive Estimation of The Intracranial Pressure Waveform. Sci Rep 2018; 8:15776. [PMID: 30361489 PMCID: PMC6202360 DOI: 10.1038/s41598-018-34083-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/11/2018] [Indexed: 11/09/2022] Open
Abstract
Time domain analysis of the intracranial pressure (ICP) waveform provides important information about the intracranial pressure-volume reserve capacity. The aim here was to explore whether the tympanic membrane pressure (TMP) waveform can be used to non-invasively estimate the ICP waveform. Simultaneous invasive ICP and non-invasive TMP signals were measured in a total of 28 individuals who underwent invasive ICP measurements as a part of their clinical work up (surveillance after subarachnoid hemorrhage in 9 individuals and diagnostic for CSF circulation disorders in 19 individuals). For each individual, a transfer function estimate between the invasive ICP and non-invasive TMP signals was established in order to explore the potential of the method. To validate the results, ICP waveform parameters including the mean wave amplitude (MWA) were computed in the time domain for both the ICP estimates and the invasively measured ICP. The patient-specific non-invasive ICP signals predicted MWA rather satisfactorily in 4/28 individuals (14%). In these four patients the differences between original and estimated MWA were <1.0 mmHg in more than 50% of observations, and <0.5 mmHg in more than 20% of observations. The study further disclosed that the cochlear aqueduct worked as a physical lowpass filter.
Collapse
Affiliation(s)
- Karen Brastad Evensen
- Department of Informatics, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Klaus Paulat
- Institute of Medical Engineering and Mechatronics, Hochschule Ulm, Ulm, Germany
| | - Fabrice Prieur
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Sverre Holm
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Al-Mufti F, Sursal T, Kim M, Menjivar AM, Cole C, Chandy D, Schmidt M, Bowers C, Gandhi CD. Noninvasive Multimodality Cerebral Monitoring Modalities in Neurosurgical Critical Care. World Neurosurg 2018; 121:249-250. [PMID: 30347294 DOI: 10.1016/j.wneu.2018.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fawaz Al-Mufti
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| | - Tolga Sursal
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| | - Michael Kim
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| | - Alvaro Martin Menjivar
- Department of Internal Medicine - Division of Critical Care, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| | - Chad Cole
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| | - Dipak Chandy
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, New York, USA; Department of Internal Medicine - Division of Critical Care, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| | - Meic Schmidt
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| | - Christian Bowers
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| | - Chirag D Gandhi
- Department of Neurology and Neurosurgery, Westchester Medical Center at New York Medical College, Valhalla, New York, USA
| |
Collapse
|
12
|
Pulsatile versus non-pulsatile tinnitus in idiopathic intracranial hypertension. Acta Neurochir (Wien) 2018; 160:2025-2029. [PMID: 30014363 DOI: 10.1007/s00701-018-3587-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Tinnitus is a symptom commonly associated with idiopathic intracranial hypertension (IIH) that can have a profound effect on quality of life. We aim to determine tinnitus symptom response after dural venous sinus stenting (DVSS) or CSF diversion with a shunt, in patients with both pulsatile (PT) and non-pulsatile tinnitus (NPT). METHODS Single-centre cohort of IIH patients (2006-2016) who underwent 24-h ICP monitoring (ICPM). An un-paired t test compared ICP and pulse amplitude (PA) values in IIH patients with PT vs. NPT. RESULTS We identified 59 patients with IIH (56 F:3 M), mean age 32.5 ± 9.49 years, 14 of whom suffered from tinnitus. Of these 14, seven reported PT and seven reported NPT. Patients with tinnitus had a mean 24-h ICP and PA of 9.09 ± 5.25 mmHg and 6.05 ± 1.07 mmHg respectively. All 7 patients with PT showed symptom improvement or resolution after DVSS (n = 4), secondary DVSS (n = 2) or shunting (n = 1). In contrast, of the 7 with NPT, only 1 improved post intervention (DVSS), despite 2 patients having shunts and 5 having DVSS. CONCLUSIONS NPT and PT were equally as common in our group of IIH patients. DVSS appears to be an effective management option for IIH patients with a clear history of pulsatile tinnitus. However, non-pulsatile tinnitus was more persistent and did not respond well to either DVSS or CSF diversion.
Collapse
|
13
|
Al-Mufti F, Smith B, Lander M, Damodara N, Nuoman R, El-Ghanem M, Kamal N, Al-Marsoummi S, Alzubaidi B, Nuoaman H, Foreman B, Amuluru K, Gandhi CD. Novel minimally invasive multi-modality monitoring modalities in neurocritical care. J Neurol Sci 2018; 390:184-192. [PMID: 29801883 DOI: 10.1016/j.jns.2018.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 11/19/2022]
Abstract
Elevated intracranial pressure (ICP) following brain injury contributes to poor outcomes for patients, primarily by reducing the caliber of cerebral vasculature, and thereby reducing cerebral blood flow. Careful monitoring of ICP is critical in these patients in order to determine prognosis, implement treatment when ICP becomes elevated, and to judge responsiveness to treatment. Currently, the gold standard for monitoring is invasive pressure transducers, usually an intraventricular monitor, which presents significant risk of infection and hemorrhage. These risks made discovering non-invasive methods for monitoring ICP and cerebral perfusion a priority for researchers. Herein we sought to review recent publications on novel minimally invasive multi-modality monitoring techniques that provide surrogate data on ICP, cerebral oxygenation, metabolism and blood flow. While limitations in various forms preclude them from supplanting the use of invasive monitors, these modalities represent useful screening tools within our armamentarium that may be invaluable when the risks of invasive monitoring outweigh the associated benefits.
Collapse
Affiliation(s)
- Fawaz Al-Mufti
- Department of Neurology, Neurosurgery and Radiology, Westchester Medical Center at New York Medical College, Valhalla, NY, United States; Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, NJ, United States.
| | - Brendan Smith
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Megan Lander
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Nitesh Damodara
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Rolla Nuoman
- Department of Neurology, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Mohammad El-Ghanem
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Naveed Kamal
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Sarmad Al-Marsoummi
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Basim Alzubaidi
- Department of Neurology, Neurosurgery and Radiology, Westchester Medical Center at New York Medical College, Valhalla, NY, United States
| | - Halla Nuoaman
- Department of Neurology, Neurosurgery and Radiology, Westchester Medical Center at New York Medical College, Valhalla, NY, United States
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, Division of Neurocritical Care, University of Cincinnati, Cincinnati, OH, United States
| | - Krishna Amuluru
- Department of Neurointerventional Radiology, University of Pittsburgh, Hamot, Erie, PA, United States
| | - Chirag D Gandhi
- Department of Neurosurgery, Westchester Medical Center - New York Medical College, Valhalla, NY, United States
| |
Collapse
|
14
|
Non-invasive Estimation of the Intracranial Pressure Waveform from the Central Arterial Blood Pressure Waveform in Idiopathic Normal Pressure Hydrocephalus Patients. Sci Rep 2018; 8:4714. [PMID: 29549286 PMCID: PMC5856800 DOI: 10.1038/s41598-018-23142-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/07/2018] [Indexed: 11/09/2022] Open
Abstract
This study explored the hypothesis that the central aortic blood pressure (BP) waveform may be used for non-invasive estimation of the intracranial pressure (ICP) waveform. Simultaneous invasive ICP and radial artery BP waveforms were measured in 29 individuals with idiopathic normal pressure hydrocephalus (iNPH). The central aortic BP waveforms were estimated from the radial artery BP waveforms using the SphygmoCor system. For each individual, a transfer function estimate between the central aortic BP and the invasive ICP waveforms was found (Intra-patient approach). Thereafter, the transfer function estimate that gave the best fit was chosen and applied to the other individuals (Inter-patient approach). To validate the results, ICP waveform parameters were calculated for the estimates and the measured golden standard. For the Intra-patient approach, the mean absolute difference in invasive versus non-invasive mean ICP wave amplitude was 1.9 ± 1.0 mmHg among the 29 individuals. Correspondingly, the Inter-patient approach resulted in a mean absolute difference of 1.6 ± 1.0 mmHg for the 29 individuals. This method gave a fairly good estimate of the wave for about a third of the individuals, but the variability is quite large. This approach is therefore not a reliable method for use in clinical patient management.
Collapse
|
15
|
Hvedstrup J, Radojicic A, Moudrous W, Herklots MW, Wert A, Holzgraefe M, Obermann M, Schoonman GG, Jensen RH, Schytz HW. Intracranial Pressure: A Comparison of the Noninvasive HeadSense Monitor versus Lumbar Pressure Measurement. World Neurosurg 2018; 112:e576-e580. [PMID: 29409948 DOI: 10.1016/j.wneu.2018.01.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To compare a new method of noninvasive intracranial pressure (nICP) measurement with conventional lumbar puncture (LP) opening pressure. METHODS In a prospective multicenter study, patients undergoing LP for diagnostic purposes underwent intracranial pressure measurements with HeadSense, a noninvasive transcranial acoustic device, and indirectly with LP. Noninvasive measurements were conducted with the head in a 30° tilt and in supine position before and after LP. The primary endpoint was the correlation between nICP measurement in supine position before LP and the LP opening pressure. RESULTS There was no correlation between supine nICPs before LP and the LP opening pressures (r = -0.211, P = 0.358). The 30° head-tilt nICPs correlated with the supine nICPs before LP (r = 0.830, P < 0.01). There was no correlation between supine nICPs before and after LP (r = 0.056, P = 0.831) or between 30° head-tilt nICPs and LP opening pressures (r = -0.038, P = 0.861). CONCLUSIONS There was no correlation between nICPs and LP opening pressures. Further development is warranted before transcranial acoustic HeadSense can become a clinical tool for investigating patients with neurologic conditions.
Collapse
Affiliation(s)
- Jeppe Hvedstrup
- Headache Diagnostic Laboratory, Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - Aleksandra Radojicic
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark; Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Walid Moudrous
- Department of Neurology, Maasstad Hospital, Rotterdam, The Netherlands
| | | | - Anton Wert
- Center for Neurology, Asklepios Hospitals Schildautal, Seesen, Germany
| | | | - Mark Obermann
- Center for Neurology, Asklepios Hospitals Schildautal, Seesen, Germany; Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Guus G Schoonman
- Department of Neurology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Rigmor Højland Jensen
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - Henrik Winther Schytz
- Headache Diagnostic Laboratory, Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
16
|
Herklots MW, Moudrous W, Oldenbeuving A, Roks G, Mourtzoukos S, Schoonman GG, Ganslandt O. Prospective Evaluation of Noninvasive HeadSense Intracranial Pressure Monitor in Traumatic Brain Injury Patients Undergoing Invasive Intracranial Pressure Monitoring. World Neurosurg 2017; 106:557-562. [PMID: 28712896 DOI: 10.1016/j.wneu.2017.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Martin W Herklots
- Department of Neurology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands.
| | - Walid Moudrous
- Department of Neurology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Annemarie Oldenbeuving
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Gerwin Roks
- Department of Neurology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | | | - Guus G Schoonman
- Department of Neurology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Oliver Ganslandt
- Department of Neurosurgery, Stuttgart Hospital, Stuttgart, Germany
| |
Collapse
|
17
|
Zhang X, Medow JE, Iskandar BJ, Wang F, Shokoueinejad M, Koueik J, Webster JG. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas 2017; 38:R143-R182. [PMID: 28489610 DOI: 10.1088/1361-6579/aa7256] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Measurement of intracranial pressure (ICP) can be invaluable in the management of critically ill patients. Cerebrospinal fluid is produced by the choroid plexus in the brain ventricles (a set of communicating chambers), after which it circulates through the different ventricles and exits into the subarachnoid space around the brain, where it is reabsorbed into the venous system. If the fluid does not drain out of the brain or get reabsorbed, the ICP increases, which may lead to brain damage or death. ICP elevation accompanied by dilatation of the cerebral ventricles is termed hydrocephalus, whereas ICP elevation accompanied by normal or small ventricles is termed idiopathic intracranial hypertension. OBJECTIVE We performed a comprehensive literature review on how to measure ICP invasively and noninvasively. APPROACH This review discusses the advantages and disadvantages of current invasive and noninvasive approaches. MAIN RESULTS Invasive methods remain the most accurate at measuring ICP, but they are prone to a variety of complications including infection, hemorrhage and neurological deficits. Ventricular catheters remain the gold standard but also carry the highest risk of complications, including difficult or incorrect placement. Direct telemetric intraparenchymal ICP monitoring devices are a good alternative. Noninvasive methods for measuring and evaluating ICP have been developed and classified in five broad categories, but have not been reliable enough to use on a routine basis. These methods include the fluid dynamic, ophthalmic, otic, and electrophysiologic methods, as well as magnetic resonance imaging, transcranial Doppler ultrasonography (TCD), cerebral blood flow velocity, near-infrared spectroscopy, transcranial time-of-flight, spontaneous venous pulsations, venous ophthalmodynamometry, optical coherence tomography of retina, optic nerve sheath diameter (ONSD) assessment, pupillometry constriction, sensing tympanic membrane displacement, analyzing otoacoustic emissions/acoustic measure, transcranial acoustic signals, visual-evoked potentials, electroencephalography, skull vibrations, brain tissue resonance and the jugular vein. SIGNIFICANCE This review provides a current perspective of invasive and noninvasive ICP measurements, along with a sense of their relative strengths, drawbacks and areas for further improvement. At present, none of the noninvasive methods demonstrates sufficient accuracy and ease of use while allowing continuous monitoring in routine clinical use. However, they provide a realizable ICP measurement in specific patients especially when invasive monitoring is contraindicated or unavailable. Among all noninvasive ICP measurement methods, ONSD and TCD are attractive and may be useful in selected settings though they cannot be used as invasive ICP measurement substitutes. For a sufficiently accurate and universal continuous ICP monitoring method/device, future research and developments are needed to integrate further refinements of the existing methods, combine telemetric sensors and/or technologies, and validate large numbers of clinical studies on relevant patient populations.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706, United States of America
| | | | | | | | | | | | | |
Collapse
|