1
|
Validity of transcranial Doppler ultrasonography-determined dynamic cerebral autoregulation estimated using transfer function analysis. J Clin Monit Comput 2022; 36:1711-1721. [PMID: 35075510 DOI: 10.1007/s10877-022-00817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Transcranial Doppler ultrasonography (TCD) is used widely to evaluate dynamic cerebral autoregulation (dCA). However, the validity of TCD-determined dCA remains unknown because TCD is only capable of measuring blood velocity and thus only provides an index as opposed to true blood flow. To test the validity of TCD-determined dCA, in nine healthy subjects, dCA was evaluated by transfer function analysis (TFA) using cerebral blood flow (CBF) or TCD-measured cerebral blood velocity during a perturbation that induces reductions in TCD-determined dCA, lower body negative pressure (LBNP) at two different stages: LBNP - 15 mmHg and - 50 mmHg. Internal carotid artery blood flow (ICA Q) was assessed as an index of CBF using duplex Doppler ultrasound. The TFA low frequency (LF) normalized gain (ngain) calculated using ICA Q increased during LBNP at - 50 mmHg (LBNP50) from rest (P = 0.005) and LBNP at - 15 mmHg (LBNP15) (P = 0.015), indicating an impaired dCA. These responses were the same as those obtained using TCD-measured cerebral blood velocity (from rest and LBNP15; P = 0.001 and P = 0.015). In addition, the ICA Q-determined TFA LF ngain from rest to LBNP50 was significantly correlated with TCD-determined TFA LF ngain (r = 0.460, P = 0.016) despite a low intraclass correlation coefficient. Moreover, in the Bland-Altman analysis, the difference in the TFA LF ngains determined by blood flow and velocity was within the margin of error, indicating that the two measurement methods can be interpreted as equivalent. These findings suggest that TCD-determined dCA can be representative of actual dCA evaluated with CBF.
Collapse
|
2
|
Washio T, Watanabe H, Suzuki K, Saito S, Ogoh S. Site-specific different dynamic cerebral autoregulation and cerebrovascular response to carbon dioxide in posterior cerebral circulation during isometric exercise in healthy young men. Auton Neurosci 2022; 238:102943. [PMID: 35086019 DOI: 10.1016/j.autneu.2022.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 11/23/2022]
Abstract
Different cerebral blood flow (CBF) responses to exercise between the posterior cerebral artery (PCA) and vertebral artery (VA) have been previously observed, though the physiological mechanisms remain unknown. There is regional heterogeneity in sympathetic innervation between the PCA and VA, which may affect CBF regulation, especially during sympathoexcitation. Thus, in the present study, we hypothesized that different CBF regulatory mechanisms between PCA and VA contribute to heterogeneous CBF responses to isometric exercise. To test this hypothesis, in thirteen healthy young men, dynamic cerebral autoregulation (CA) and cerebrovascular CO2 reactivity (CVR), were identified in each artery during a 2-min isometric handgrip (IHG) exercise at 30% of maximum voluntary contraction. Similar to previous data, PCA cerebrovascular conductance (CVC) index was decreased from rest (P < 0.004), but not VA CVC during IHG exercise (P > 0.084). Dynamic CA in both PCA and VA were unaltered during the IHG exercise (P = 0.129). On the other hand, PCA CVR was increased during the IHG exercise (P < 0.001) while VA CVR was unchanged (P = 0.294). In addition, individual exercise-induced changes in end-tidal partial pressure of CO2 was related to the individual change in PCA blood velocity (P < 0.046), but was not observed for VA blood flow (P > 0.420). Therefore, these exercise-induced differences in CVR between PCA and VA may contribute to exercise-induced heterogeneous CBF response in the posterior cerebral circulation. These findings indicate that the site-specific posterior CBF should be considered in further research for assessing posterior cerebral circulation.
Collapse
Affiliation(s)
- Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Kazuya Suzuki
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Shotaro Saito
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan; Neurovascular Research Laboratory, University of South Wales, UK.
| |
Collapse
|
3
|
Chi NF, Ku HL, Wang CY, Liu Y, Chan L, Lin YC, Peng CK, Novak V, Hu HH, Hu CJ. Dynamic Cerebral Autoregulation Assessment Using Extracranial Internal Carotid Artery Doppler Ultrasonography. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1307-1313. [PMID: 28411965 DOI: 10.1016/j.ultrasmedbio.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/07/2017] [Accepted: 02/02/2017] [Indexed: 06/07/2023]
Abstract
Transcranial Doppler ultrasonography of the middle cerebral artery (MCA) is frequently used to assess dynamic cerebral autoregulation (dCA); however, this is difficult in patients with poor temporal bone windows. In the study described here, we investigated the agreement and sensitivity of dCA indices determined from the extracranial internal carotid artery (ICA) and those determined from the MCA. Measurements for 32 stroke patients and 59 controls were analyzed. Measurement of the mean flow correlation index (Mx) and transfer function analysis based on spontaneous blood pressure fluctuation were simultaneously performed for the extracranial ICA and MCA. The mean values of Mx and phase shift did not significantly differ between the ICA and MCA (mean difference: Mx = 0.01; phase shift of very low frequency [VLF] = 0.7°, low frequency [LF] = 3.3° and high frequency = 4.5°), but the gains in VLF and LF in the ICA were significantly lower than those in the MCA (mean difference: gain of VLF = -0.13, gain of LF = -0.10). The intra-class correlation coefficient between the dCA indices of the ICA and MCA was favorable in Mx (0.76) and the phase shift of VLF (0.72). The area under the receiver operating characteristic curve for stroke diagnosis did not differ among the dCA indices. We conclude that dCA assessed from the ICA is as effective as that from the MCA, but the results are not interchangeable.
Collapse
Affiliation(s)
- Nai-Fang Chi
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Lun Ku
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yen Wang
- Research Center for Adaptive Data Analysis, National Central University, Taoyuan, Taiwan
| | - Yanhui Liu
- Fengsheng Yongkang Software Technology Corporation, Nanjing, China
| | - Lung Chan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Health Management Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Vera Novak
- Departments of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Han-Hwa Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|