1
|
Gong Z, Lo WLA, Wang R, Li L. Electrical impedance myography combined with quantitative assessment techniques in paretic muscle of stroke survivors: Insights and challenges. Front Aging Neurosci 2023; 15:1130230. [PMID: 37020859 PMCID: PMC10069712 DOI: 10.3389/fnagi.2023.1130230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Aging is a non-modifiable risk factor for stroke and the global burden of stroke is continuing to increase due to the aging society. Muscle dysfunction, common sequela of stroke, has long been of research interests. Therefore, how to accurately assess muscle function is particularly important. Electrical impedance myography (EIM) has proven to be feasible to assess muscle impairment in patients with stroke in terms of micro structures, such as muscle membrane integrity, extracellular and intracellular fluids. However, EIM alone is not sufficient to assess muscle function comprehensively given the complex contributors to paretic muscle after an insult. This article discusses the potential to combine EIM and other common quantitative methods as ways to improve the assessment of muscle function in stroke survivors. Clinically, these combined assessments provide not only a distinct advantage for greater accuracy of muscle assessment through cross-validation, but also the physiological explanation on muscle dysfunction at the micro level. Different combinations of assessments are discussed with insights for different purposes. The assessments of morphological, mechanical and contractile properties combined with EIM are focused since changes in muscle structures, tone and strength directly reflect the muscle function of stroke survivors. With advances in computational technology, finite element model and machine learning model that incorporate multi-modal evaluation parameters to enable the establishment of predictive or diagnostic model will be the next step forward to assess muscle function for individual with stroke.
Collapse
Affiliation(s)
- Ze Gong
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoli Wang
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Le Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Le Li,
| |
Collapse
|
2
|
Bioelectrical Impedance Vector and Creatine Phosphokinase Changes Induced by a High-Intensity Training Session in Rink Hockey Players. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study aimed to analyze anthropometric and whole-body/muscle-localized bioelectrical impedance vector analysis (BIVA) adaptations and their relation to creatine kinase (CK) as a biomarker of muscle damage in a group of seven male players in the maximum category of professional rink hockey. There were three checkpoint assessments in relation to a high-intensity training session: pre-session (PRE), post-session (POST), and 24 h-post-session (POST24H). The resistance, reactance, and impedance module were adjusted by height (R/h, Xc/h, and Z/h, respectively). The Wilcoxon signed-rank test was used to compare the data at baseline and follow-up, while Spearman correlation was used to explore the relationship between CK and the rest of the parameters. The results registered a decrease in body mass at POST (p = 0.03) and a reestablishment at POST24H (p = 0.02). Whole-body BIVA registered a significant increase in R/h between PRE–to–POST (p = 0.02) and returned to baseline values at POST24H (p = 0.02), which was expected since this parameter is related to hydration processes. Muscle-localized BIVA in the rectus femoris muscle showed an increase in both Xc/h and phase angle in POST (p = 0.04 and p = 0.03, respectively) and a decrease in Xc/h at POST24H (p = 0.02). CK correlated with R/h in the rectus femoris at all the checkpoints (PRE–to–POST: r = 0.75, p = 0.05; PRE–to–POST24H: r = 0.81, p = 0.03; POST–to–POST24H: r = 0.82, p = 0.02). Our results indicate that BIVA is a sensitive methodology to assess general and muscle-localized hydration induced by a high-intensity training session in rink hockey players. A correlation between BIVA and CK was also reported.
Collapse
|
3
|
Vavrinsky E, Subjak J, Donoval M, Wagner A, Zavodnik T, Svobodova H. Application of Modern Multi-Sensor Holter in Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2663. [PMID: 32392697 PMCID: PMC7273207 DOI: 10.3390/s20092663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Modern Holter devices are very trendy tools used in medicine, research, or sport. They monitor a variety of human physiological or pathophysiological signals. Nowadays, Holter devices have been developing very fast. New innovative products come to the market every day. They have become smaller, smarter, cheaper, have ultra-low power consumption, do not limit everyday life, and allow comfortable measurements of humans to be accomplished in a familiar and natural environment, without extreme fear from doctors. People can be informed about their health and 24/7 monitoring can sometimes easily detect specific diseases, which are normally passed during routine ambulance operation. However, there is a problem with the reliability, quality, and quantity of the collected data. In normal life, there may be a loss of signal recording, abnormal growth of artifacts, etc. At this point, there is a need for multiple sensors capturing single variables in parallel by different sensing methods to complement these methods and diminish the level of artifacts. We can also sense multiple different signals that are complementary and give us a coherent picture. In this article, we describe actual interesting multi-sensor principles on the grounds of our own long-year experiences and many experiments.
Collapse
Affiliation(s)
- Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia
| | - Jan Subjak
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Alexandra Wagner
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia; (A.W.); (H.S.)
| | - Tomas Zavodnik
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Helena Svobodova
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia; (A.W.); (H.S.)
| |
Collapse
|
4
|
Fischer G, Handler M, Johnston PR, Baumgarten D. Impedance and conductivity of bovine myocardium during freezing and thawing at slow rates - implications for cardiac cryo-ablation. Med Eng Phys 2019; 74:89-98. [PMID: 31570217 DOI: 10.1016/j.medengphy.2019.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023]
Abstract
Increasing impedance during freezing might be a valuable marker for guiding cardiac cryo-ablation. We provide model based insights on how decreasing temperature below the freezing point of tissue relates to the percentage of frozen water. Furthermore, we provide experimental data for comparing this percentage with the increase in impedance. Measurements were performed on a bovine tissue sample at frequencies between 5 and 80 kHz. Slow cooling and heating rates were applied to minimize temperature gradients in the myocardial sample and to allow accurate assessment of the freezing point. Computer simulation was applied to link impedance with temperature dependent conductivities. The osmotic virial equation was used to estimate the percentage of frozen water. Measurements identified the freezing point at -0.6 ∘C. At -5 ∘C, impedance rose by more than a factor of ten compared to that at the freezing point and the percentage of frozen water was estimated as being 89%. At -49 ∘C impedance had increased by up to three orders of magnitude and ice formation was most pronounced in the extracellular space. Progressive ice formation in tissue is reflected by a large increase in impedance, and impedance increases monotonically with the percentage of frozen water. Its analysis allows for experimental assessment of factors relevant to cell death. Solid ice contributes to the rupture of the micro-vasculature, while phase shifts reflect concentration differences between extra- and intracellular space driving osmotic water transfer across cell membranes.
Collapse
Affiliation(s)
- G Fischer
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Eduard-Wallnoefer-Zentrum 1, Hall in Tyrol 6060, Austria; AFreeze GmbH, Innsbruck, Austria.
| | - M Handler
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Eduard-Wallnoefer-Zentrum 1, Hall in Tyrol 6060, Austria; School of Environment and Science, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - P R Johnston
- School of Environment and Science, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - D Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Eduard-Wallnoefer-Zentrum 1, Hall in Tyrol 6060, Austria; Institute of Electrical and Biomedical Engineering, Technische Universität Ilmenau, Ilmenau, Germany
| |
Collapse
|
5
|
Freeborn TJ, Fu B. Time-course bicep tissue bio-impedance changes throughout a fatiguing exercise protocol. Med Eng Phys 2019; 69:109-115. [PMID: 31056402 DOI: 10.1016/j.medengphy.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
This study investigated the localized electrical-impedance changes in the biceps tissues throughout a fatiguing exercise protocol. During the protocol, 17 subjects performed 10 sets of bicep curl repetitions at either 60% or 75% of their one-repetition maximum weight until task failure. The localized tissue impedance (resistance, reactance, phase angle) was measured at 10 kHz, 50 kHz, and 100 kHz immediately after each of 10 sets for comparison against the baseline pre-fatigue measures. A trend of decreasing resistance and reactance magnitude were observed, with greater changes occurring as the protocol progressed. Statistical testing demonstrated statistically significant changes in resistance, reactance, and phase angle for both groups of participants. The significant changes in resistance were observed at earlier time-points than the reactance and phase angle changes for both groups.
Collapse
Affiliation(s)
- Todd J Freeborn
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Bo Fu
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
6
|
Zong Y, Shin HH, Wang YC, Li S, Zhou P, Li X. Assessing Hand Muscle Structural Modifications in Chronic Stroke. Front Neurol 2018; 9:296. [PMID: 29867714 PMCID: PMC5953342 DOI: 10.3389/fneur.2018.00296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
The purpose of the study is to assess poststroke muscle structural alterations by examining muscular electrical conductivity and inherent electrophysiological properties. In particular, muscle impedance and compound muscle action potentials (CMAP) were measured from the hypothenar muscle bilaterally using the electrical impedance myography and the electrophysiological techniques, respectively. Significant changes of muscle impedance were observed in the paretic muscle compared with the contralateral side (resistance: paretic: 27.54 ± 0.97 Ω, contralateral: 25.46 ± 0.91 Ω, p < 0.05; phase angle: paretic: 8.81 ± 0.61°, contralateral: 10.79 ± 0.69°, p < 0.05). In addition, impedance changes correlated moderately with the CMAP amplitude in the paretic hand (phase angle: r = 0.66, p < 0.05; reactance: r = 0.58, p < 0.05). The study discloses significant muscle rearrangements as a result of fiber loss or atrophy, fat infiltration or impaired membrane integrity in chronic stroke.
Collapse
Affiliation(s)
- Ya Zong
- Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Guangdong Work Injury Rehabilitation Center, Guangzhou, China.,Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, TIRR Memorial Hermann Research Center, Houston, TX, United States
| | - Henry H Shin
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, TIRR Memorial Hermann Research Center, Houston, TX, United States
| | - Ying-Chih Wang
- Department of Occupational Science and Technology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, TIRR Memorial Hermann Research Center, Houston, TX, United States
| | - Ping Zhou
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China.,Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, TIRR Memorial Hermann Research Center, Houston, TX, United States
| | - Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, TIRR Memorial Hermann Research Center, Houston, TX, United States
| |
Collapse
|
7
|
Li X, Li L, Shin H, Li S, Zhou P. Electrical Impedance Myography for Evaluating Paretic Muscle Changes After Stroke. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2113-2121. [PMID: 28574361 DOI: 10.1109/tnsre.2017.2707403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrical impedance myography (EIM) was used to assess the paretic muscle intrinsic electrical properties post stroke. Twenty-seven subjects with chronic hemiparesis participated in this study. Muscle impedance was measured by applying high-frequency, low-intensity alternating current to biceps brachii muscles. Major EIM parameters, resistance ( ), reactance ( ), phase angle ( ), and electrical anisotropy ratios (AR) of the three parameters, were examined at 50 kHz. Statistical analysis demonstrated significant reduction of reactance, phase angle, AR of resistance, and AR of reactance in the paretic muscle compared with the contralateral side (Paretic X: , contralateral X: , and p < 0.001; Paretic : , contralateral : 14.5 ± 0.82°, and p < 0.001; Paretic AR of R: 0.969 ± 0.013, contralateral AR of R: 1.008 ± 0.011, and p < 0.02; and Paretic AR of X: 0.981 ± 0.066, contralateral AR of X: 1.114 ± 0.041, and p < 0.02). Correlation analysis, however, did not show any significant relationship between EIM parameters and clinical assessments. Findings of this paper indicated significant changes in the muscular intrinsic electrical properties after stroke, possibly related to structural modifications induced by loss of muscle fibers or fat infiltration as well as changes in the quality of cell membranes post stroke.
Collapse
|