1
|
Narayan M, Bhowmick M. Needle Tip Tracking through Photoluminescence for Minimally Invasive Surgery. BIOSENSORS 2024; 14:470. [PMID: 39451683 PMCID: PMC11505679 DOI: 10.3390/bios14100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Minimally invasive surgery continues to prioritize patient safety by improving imaging techniques and tumor detection methods. In this work, an all-optical alternative to the current image based techniques for in vitro minimally invasive procedures has been explored. The technique uses a highly fluorescent marker for the surgical needle to be tracked inside simulated tissues. A series of markers were explored including inorganic (Perovskite and PbS) and organic (carbon dots) nanoparticles and organic dye (Rhodamine 6G) to identify layers of different stiffnesses within a tissue. Rhodamine 6G was chosen based on its high fluorescence signal to track 3D position of a surgical needle in a tissue. The needle was tracked inside homogeneous and inhomogeneous gelatin tissues successfully. This exploratory study of tissue characterization and needle tip tracking using fluorescent markers or photoluminescence technique show potential for real-time application of robot-assisted needle insertions during in vivo procedures.
Collapse
Affiliation(s)
- Meenakshi Narayan
- Department of Engineering Technology, Miami University, Middletown, OH 45042, USA
| | - Mithun Bhowmick
- Department of Mathematical and Physical Sciences, Miami University, Middletown, OH 45042, USA;
| |
Collapse
|
2
|
Duan Y, Ling J, Feng Z, Ye T, Sun T, Zhu Y. A Survey of Needle Steering Approaches in Minimally Invasive Surgery. Ann Biomed Eng 2024; 52:1492-1517. [PMID: 38530535 DOI: 10.1007/s10439-024-03494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
In virtue of a curved insertion path inside tissues, needle steering techniques have revealed the potential with the assistance of medical robots and images. The superiority of this technique has been preliminarily verified with several maneuvers: target realignment, obstacle circumvention, and multi-target access. However, the momentum of needle steering approaches in the past decade leads to an open question-"How to choose an applicable needle steering approach for a specific clinical application?" This survey discusses this question in terms of design choices and clinical considerations, respectively. In view of design choices, this survey proposes a hierarchical taxonomy of current needle steering approaches. Needle steering approaches of different manipulations and designs are classified to systematically review the design choices and their influences on clinical treatments. In view of clinical consideration, this survey discusses the steerability and acceptability of the current needle steering approaches. On this basis, the pros and cons of the current needle steering approaches are weighed and their suitable applications are summarized. At last, this survey concluded with an outlook of the needle steering techniques, including the potential clinical applications and future developments in mechanical design.
Collapse
Affiliation(s)
- Yuzhou Duan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jie Ling
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhao Feng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Tingting Ye
- Industrial and Systems Engineering Department, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Tairen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuchuan Zhu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
3
|
Bo Y, Wang H, Niu H, He X, Xue Q, Li Z, Yang H, Niu F. Advancements in materials, manufacturing, propulsion and localization: propelling soft robotics for medical applications. Front Bioeng Biotechnol 2024; 11:1327441. [PMID: 38260727 PMCID: PMC10800571 DOI: 10.3389/fbioe.2023.1327441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.
Collapse
Affiliation(s)
- Yunwen Bo
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haochen Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Niu
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang He
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Quhao Xue
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zexi Li
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
4
|
Hu S, Lu R, Zhu Y, Zhu W, Jiang H, Bi S. Application of Medical Image Navigation Technology in Minimally Invasive Puncture Robot. SENSORS (BASEL, SWITZERLAND) 2023; 23:7196. [PMID: 37631733 PMCID: PMC10459274 DOI: 10.3390/s23167196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Microneedle puncture is a standard minimally invasive treatment and surgical method, which is widely used in extracting blood, tissues, and their secretions for pathological examination, needle-puncture-directed drug therapy, local anaesthesia, microwave ablation needle therapy, radiotherapy, and other procedures. The use of robots for microneedle puncture has become a worldwide research hotspot, and medical imaging navigation technology plays an essential role in preoperative robotic puncture path planning, intraoperative assisted puncture, and surgical efficacy detection. This paper introduces medical imaging technology and minimally invasive puncture robots, reviews the current status of research on the application of medical imaging navigation technology in minimally invasive puncture robots, and points out its future development trends and challenges.
Collapse
Affiliation(s)
| | - Rongjian Lu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (S.H.)
| | | | | | | | | |
Collapse
|
5
|
Fong KY, Tan ASM, Bin Sulaiman MS, Leong SH, Ng KW, Too CW. Phantom and Animal Study of a Robot-Assisted, CT-Guided Targeting System using Image-Only Navigation for Stereotactic Needle Insertion without Positional Sensors. J Vasc Interv Radiol 2022; 33:1416-1423.e4. [PMID: 35970505 DOI: 10.1016/j.jvir.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To evaluate the feasibility and accuracy of a robotic system to integrate and map computed tomography (CT) and robotic coordinates, followed by automatic trajectory execution by a robotic arm. The system was hypothesized to achieve a targeting error of <5 mm without significant influence from variations in angulation or depth. MATERIALS AND METHODS An experimental study was conducted using a robotic system (Automated Needle Targeting device for CT [ANT-C]) for needle insertions into a phantom model on both moving patient table and moving gantry CT scanners. Eight spherical markers were registered as targets for 90 insertions at different trajectories. After a single ANT-C registration, the closed-loop software targeted multiple markers via the insertion of robotically aligned 18-gauge needles. Accuracy (distance from the needle tip to the target) was assessed by postinsertion CT scans. Similar procedures were repeated to guide 10 needle insertions into a porcine lung. A regression analysis was performed to test the effect of needle angulation and insertion depth on the accuracy of insertion. RESULTS In the phantom model, all needle insertions (median trajectory depth, 64.8 mm; range, 46.1-153 mm) were successfully performed in single attempts. The overall accuracy was 1.36 mm ± 0.53, which did not differ between the 2 types of CT scanners (1.39 mm ± 0.54 [moving patient table CT] vs 1.33 mm ± 0.52 [moving gantry CT]; P = .54) and was not significantly affected by the needle angulation and insertion depth. The accuracy for the porcine model was 9.09 mm ± 4.21. CONCLUSIONS Robot-assisted needle insertion using the ANT-C robotic device was feasible and accurate for targeting multiple markers in a phantom model.
Collapse
Affiliation(s)
- Khi Yung Fong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alexander Sheng Ming Tan
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore; Radiological Sciences Academic Clinical Program, SingHealth-Duke-NUS Academic Medical Centre, Singapore
| | | | | | - Ka Wei Ng
- NDR Medical Technology Pvt Ltd, Singapore
| | - Chow Wei Too
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore; Radiological Sciences Academic Clinical Program, SingHealth-Duke-NUS Academic Medical Centre, Singapore.
| |
Collapse
|
6
|
Robotic needle steering: state-of-the-art and research challenges. INTEL SERV ROBOT 2022. [DOI: 10.1007/s11370-022-00446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhao Z, Li R, Xu LJ, Enzmann DR, Wood BJ, Tse ZTH. Angular needle tracker and stabilizer for image-guided interventions. MINIM INVASIV THER 2022; 31:410-417. [PMID: 33207973 PMCID: PMC10569073 DOI: 10.1080/13645706.2020.1832122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Minimally invasive image-guided interventions have changed the face of procedural medicine. For these procedures, safety and efficacy depend on precise needle placement. Needle targeting devices help improve the accuracy of needle placement, but their use has not seen broad penetration. Some of these devices are costly and require major modifications to the clinical workflow. In this article, we developed a low-cost, disposable, and easy-to-use angulation tracking device, which was based on a redesigned commercial passive needle holder. MATERIAL AND METHODS The new design provided real-time angulation information for needle tracking. In this design, two potentiometers were used as angulation sensors, and they were connected to two axes of the passive needle holder's arch structure through a 3 D-printed bridge structure. A control unit included an Arduino Pro Mini, a Bluetooth module, and two rechargeable batteries. The angulation was calculated and communicated in real time to a novel developed smartphone app, where real-time angulation information was displayed for guiding the operator to position the needle to the planned angles. RESULTS The open-air test results showed that the average errors are 1.03° and 1.08° for left-right angulation and head-foot angulation, respectively. The animal cadaver tests revealed that the novel system had an average angular error of 3.2° and a radial distance error of 3.1 mm. CONCLUSIONS The accuracy was comparable with some commercially available solutions. The novel and low-cost needle tracking device may find a role as part of a real-time precision approach to both planning and implementation of image-guided therapies.
Collapse
Affiliation(s)
- Zhuo Zhao
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, USA
| | - Rui Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, USA
| | - Lingwen J Xu
- Magnet Program, Montgomery Blair High School, Silver Spring, MD, USA
| | - Dieter R Enzmann
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Bradford J Wood
- Center for Interventional Oncology, National Institutes of Health, Bethesda, MD, USA
| | - Zion Tsz Ho Tse
- Department of Electronic Engineering, University of York, Heslington, York, UK
- 3T Technologies LLC, Marietta, GA, USA
| |
Collapse
|
8
|
Unger M, Berger J, Melzer A. Robot-Assisted Image-Guided Interventions. Front Robot AI 2021; 8:664622. [PMID: 34322519 PMCID: PMC8312560 DOI: 10.3389/frobt.2021.664622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Image guidance is a common methodology of minimally invasive procedures. Depending on the type of intervention, various imaging modalities are available. Common imaging modalities are computed tomography, magnetic resonance tomography, and ultrasound. Robotic systems have been developed to enable and improve the procedures using these imaging techniques. Spatial and technological constraints limit the development of versatile robotic systems. This paper offers a brief overview of the developments of robotic systems for image-guided interventions since 2015 and includes samples of our current research in this field.
Collapse
Affiliation(s)
- Michael Unger
- Innovation Center Computer Assisted Surgery, Leipzig, Germany
| | - Johann Berger
- Innovation Center Computer Assisted Surgery, Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery, Leipzig, Germany.,Institute for Medical Science and Technology, IMSaT, University Dundee, Dundee, United Kingdom
| |
Collapse
|
9
|
Su B, Yu S, Yan H, Hu YD, Buzurovic I, Liu D, Liu L, Teng Y, Tang J, Wang J, Liu W. Biopsy Needle System With a Steerable Concentric Tube and Online Monitoring of Electrical Resistivity and Insertion Forces. IEEE Trans Biomed Eng 2021; 68:1702-1713. [PMID: 33606624 DOI: 10.1109/tbme.2021.3060541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Biopsies are the gold standard for clinical diagnosis. However, a discrepancy between the biopsy sample and target tissue because of misplacement of the biopsy spoon can lead to errors in the diagnosis and subsequent treatment. Thus, correctly determining whether the needle tip is in the tumor is crucial for accurate biopsy results. METHODS A biopsy needle system was designed with a steerable, flexible, and superelastic concentric tube; electrodes to monitor the electrical resistivity; and load cells to monitor the insertion force. The degrees of freedom were analyzed for two working modes: straight-line and deflection. RESULTS Experimental results showed that the system could perceive the tissue type in online based on the electrical resistivity. In addition, changes in the insertion force indicated transitions between the interfaces of adjacent tissue layers. CONCLUSION The two monitoring methods guarantee that the biopsy spoon is at the desired position inside the tumor during an operation. SIGNIFICANCE The proposed biopsy needle system can be integrated into an autonomous robotic biopsy system.
Collapse
|
10
|
Fujie MG, Zhang B. State-of-the-art of intelligent minimally invasive surgical robots. Front Med 2020; 14:404-416. [DOI: 10.1007/s11684-020-0743-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023]
|
11
|
Hiraki T, Kamegawa T, Matsuno T, Sakurai J, Komaki T, Yamaguchi T, Tomita K, Uka M, Matsui Y, Iguchi T, Gobara H, Kanazawa S. Robotic needle insertion during computed tomography fluoroscopy-guided biopsy: prospective first-in-human feasibility trial. Eur Radiol 2019; 30:927-933. [PMID: 31444597 DOI: 10.1007/s00330-019-06409-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION This was a prospective, first-in-human trial to evaluate the feasibility and safety of insertion of biopsy introducer needles with our robot during CT fluoroscopy-guided biopsy in humans. MATERIALS AND METHODS Eligible patients were adults with a lesion ≥ 10 mm in an extremity or the trunk requiring pathological diagnosis with CT fluoroscopy-guided biopsy. Patients in whom at-risk structures were located within 10 mm of the scheduled needle tract were excluded. Ten patients (4 females and 6 males; mean [range] age, 72 [52-87] years) with lesions (mean [range] maximum diameter, 28 [14-52] mm) in the kidney (n = 4), lung (n = 3), mediastinum (n = 1), adrenal gland (n = 1), and muscle (n = 1) were enrolled. The biopsy procedure involved robotic insertion of a biopsy introducer needle followed by manual acquisition of specimens using a biopsy needle. The patients were followed up for 14 days. Feasibility was defined as the distance of ≤ 10 mm between needle tip after insertion and the nearest lesion edge on the CT fluoroscopic images. The safety of robotic insertion was evaluated on the basis of machine-related troubles and adverse events according to the Clavien-Dindo classification. RESULTS Robotic insertion of the introducer needle was feasible in all patients, enabling pathological diagnosis. There was no machine-related trouble. A total of 11 adverse events occurred in 8 patients, including 10 grade I events and 1 grade IIIa event. CONCLUSION Insertion of biopsy introducer needles with our robot was feasible at several locations in the human body. KEY POINTS • Insertion of biopsy introducer needles with our robot during CT fluoroscopy-guided biopsy was feasible at several locations in the human body.
Collapse
Affiliation(s)
- Takao Hiraki
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan.
| | - Tetsushi Kamegawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Takayuki Matsuno
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Jun Sakurai
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toshiyuki Komaki
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Takuya Yamaguchi
- Division of Radiology, Medical Technology Department, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Koji Tomita
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Mayu Uka
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Yusuke Matsui
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toshihiro Iguchi
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Hideo Gobara
- Division of Medical Informatics, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Susumu Kanazawa
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| |
Collapse
|
12
|
Zhao Z, Jordan S, Tse ZTH. Devices for image-guided lung interventions: State-of-the-art review. Proc Inst Mech Eng H 2019; 233:444-463. [DOI: 10.1177/0954411919832042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-related death. According to the American Cancer Society, there were an estimated 222,500 new cases of lung cancer and 155,870 deaths from lung cancer in the United States in 2017. Accurate localization in lung interventions is one of the keys to reducing the death rate from lung cancer. In this study, a total of 217 publications from 2006 to 2017 about designs of medical devices for localization in lung interventions were screened, shortlisted, and categorized by localization principle and reviewed for functionality. Each study was analyzed for engineering characteristics and clinical significance. Research regarding interventional imaging equipment, navigation systems, and surgical devices was reviewed, and both research prototypes and commercial products were discussed. Finally, the future directions and existing challenges were summarized, including real-time intra-procedure guidance, accuracy of localization, clinical application, clinical adoptability, and clinical regulatory issues.
Collapse
Affiliation(s)
- Zhuo Zhao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Sophie Jordan
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Zion Tsz Ho Tse
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- 3T Technologies LLC, Atlanta, GA, USA
| |
Collapse
|
13
|
Shahriari N, Georgiadis JR, Oudkerk M, Misra S. Hybrid control algorithm for flexible needle steering: Demonstration in phantom and human cadaver. PLoS One 2018; 13:e0210052. [PMID: 30596801 PMCID: PMC6312316 DOI: 10.1371/journal.pone.0210052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/17/2018] [Indexed: 01/05/2023] Open
Abstract
Needles are commonly used in the clinic for percutaneous procedures. The outcome of such procedures heavily depends on accurate placement of the needle. There are two main challenges to achieve high accuracy: First, aligning the needle with the targeted lesion, and second, compensating for the deflection of the needle in the tissue. In order to address these challenges, scientists have developed several robotic setups for needle steering. However, the subject is still under research and reliable implementations which can be used in clinical practice are not yet available. In this paper, we have taken some steps in order to bring needle steering closer to practice. A new hybrid control algorithm is developed, which enables us to control a flexible needle by combing base-manipulation and beveled-tip steering methods. A pre-operative path planner is developed which considers the clinical requirements. The proposed method is tested in the lung of a fresh-frozen human cadaver. The work-flow of the experiments are similar to the current clinical practice. Three experimental cases are used to evaluate the proposed steering algorithm. Experimental Case I shows that using the proposed steering algorithm controllability of the needle is increased. In Case II and Case III, the needle is steered in a gelatin phantom and a human cadaver, respectively. The targeting accuracy of 1.35±0.49mm in gelatin phantom and 1.97±0.89mm in cadave is achieved. A feasibility study is performed, in which a fine needle aspiration (FNA) needle is steered in the lungs of a human cadaver under computed tomography guidance. The targeting error for the feasibility study is 2.89±0.22mm. The results suggest that such a robotic system can be beneficial for clinical use and the patient receives less x-ray radiation.
Collapse
Affiliation(s)
- Navid Shahriari
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen, The Netherlands
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Janniko R. Georgiadis
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs Oudkerk
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen, The Netherlands
| | - Sarthak Misra
- University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen, The Netherlands
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Zhou X, Zhang H, Feng M, Zhao J, Fu Y. New remote centre of motion mechanism for robot-assisted minimally invasive surgery. Biomed Eng Online 2018; 17:170. [PMID: 30453983 PMCID: PMC6245885 DOI: 10.1186/s12938-018-0601-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Robot-assisted minimally invasive surgery (RMIS) is promising for improving surgical accuracy and dexterity. As the end effector of the robotic arm, the remote centre of motion mechanism is one of the requisite terms for guaranteeing patient safety. The existing remote centre of motion mechanisms are complex and large in volume, as well as high assembly requirement and unsatisfactory precise. This paper aimed to present a new remote centre of motion mechanism for solving these problems. METHODS A new mechanism based on the RMIS requirements is proposed for holding the laparoscope and generating a remote centre of motion for the laparoscope. The mechanism kinematics is then analysed from the perspective of the structural function, and its inverse kinematics is determined with a small number of calculations. Finally, the position deviation of the laparoscope rotational point is chosen as the index to evaluate the mechanism performance. The experiments are performed to test the deviation. RESULTS The position deviations of the laparoscope rotational point do not exceed 2 mm, which is lower than that of the existing remote centre of motion mechanism. The 2 mm positioning error of the laparoscope won't affect surgeon observation of the surgical field, and the pressure caused by the positioning error was acceptable for the skin elasticity. The proposed mechanism meets the RMIS requirement. CONCLUSIONS The proposed mechanism can achieve the remote centre of motion for the laparoscope. Its simple and compact structure is beneficial to avoid the collision of robotic arms, and it can be applied on other robots for providing the instrument necessary motion in minimally invasive surgery.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Jilin University, Nan Guan District, Changchun, China
| | - Haijun Zhang
- Jilin University, Nan Guan District, Changchun, China
| | - Mei Feng
- Jilin University, Nan Guan District, Changchun, China
| | - Ji Zhao
- Jilin University, Nan Guan District, Changchun, China
| | - Yili Fu
- Harbin Institute of Technology, Nan Gang District, Harbin, China
| |
Collapse
|