1
|
Tovbis D, Lee E, Koh RGL, Jeong R, Agur A, Yoo PB. Enhancing the selective electrical activation of human vagal nerve fibers: a comparative computational modeling study with validation in a rat sciatic model. J Neural Eng 2023; 20:066012. [PMID: 37963401 DOI: 10.1088/1741-2552/ad0c60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Objective.Vagus nerve stimulation (VNS) is an emerging treatment option for a myriad of medical disorders, where the method of delivering electrical pulses can vary depending on the clinical indication. In this study, we investigated the relative effectiveness of electrically activating the cervical vagus nerve among three different approaches: nerve cuff electrode stimulation (NCES), transcutaneous electrical nerve stimulation (TENS), and enhanced TENS (eTENS). The objectives were to characterize factors that influenced nerve activation and to compare the nerve recruitment properties as a function of nerve fiber diameter.Methods.The Finite Element Model, based on data from the Visible Human Project, was implemented in COMSOL. The three simulation types were compared under a range of vertical and horizontal displacements relative to the location of the vagus nerve. Monopolar anodic stimulation was examined, along with latency and activation of different fiber sizes. Nerve activation was determined via the activating function and McIntyre-Richardson-Grill models, and activation thresholds were validated in anin-vivorodent model.Results.While NCES produced the lowest activation thresholds, eTENS generally performed superior to TENS under the range of conditions and fiber diameters, producing activation thresholds up to three times lower than TENS. eTENS also preserved its enhancement when surface electrodes were displaced away from the nerve. Anodic stimulation revealed an inhibitory region that removed eTENS benefits. eTENS also outperformed TENS by up to four times when targeting smaller diameter nerve fibers, scaling similar to a cuff electrode. In latency and activation of smaller diameter nerve fibers, eTENS results resembled those of NCES more than a TENS electrode. Activation threshold ratios were consistent inin-vivovalidation.Significance.Our findings expand upon previously identified mechanisms for eTENS and further demonstrate how eTENS emulates a nerve cuff electrode to achieve lower activation thresholds. This work further characterizes considerations required for VNS under the three stimulation methods.
Collapse
Affiliation(s)
- Daniel Tovbis
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Eugene Lee
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| | - Ryan G L Koh
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Rania Jeong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Anne Agur
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Paul B Yoo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Gu XS, Ming D, Chu XL, Song XZ, Li YR, Wu ZR, Li Q, Li QW. An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection. Neural Regen Res 2023; 18:683-688. [DOI: 10.4103/1673-5374.350215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Zhang Y, Wang S, Zu S, Zhang C. Transcutaneous electrical nerve stimulation and solifenacin succinate versus solifenacin succinate alone for treatment of overactive bladder syndrome: A double-blind randomized controlled study. PLoS One 2021; 16:e0253040. [PMID: 34161360 PMCID: PMC8221460 DOI: 10.1371/journal.pone.0253040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE We evaluated a combination of transcutaneous electrical nerve stimulation (TENS) and solifenacin succinate versus solifenacin alone in the treatment of overactive bladder (OAB). METHODS Ninety-seven female outpatients with OAB were screened for this double-blind randomized controlled study. Eighty-six patients who met our inclusion criteria were divided randomly into two groups. In group A (43 patients), patients received oral solifenacin and "fake" TENS on the foot; in group B (43 patients), patients received oral solifenacin and effective TENS on the foot. Improvements in OAB symptoms were assessed by Overactive Bladder Symptom Score (OABSS), Overactive Bladder Questionnaire (OAB-q), voiding diaries and urodynamic tests. 70 of 86 patients (36 in group A, 34 in group B) completed the 2 months of treatment and 3 months of follow-up. RESULTS Statistically, the maximum bladder volume and OAB symptoms of both groups improved significantly after treatment. The improvement in group B was significantly better than that in group A, as indicated by the maximum bladder volume, OAB-q score and voiding diary. Some mild adverse effects were observed, including dry mouth, stomach upset, constipation, muscle pain and local paresthesia. CONCLUSION The combination of TENS and solifenacin was more effective in improving OAB symptoms than solifenacin alone.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Chanjuan Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
4
|
Stefano M, Cordella F, Loppini A, Filippi S, Zollo L. A Multiscale Approach to Axon and Nerve Stimulation Modeling: A Review. IEEE Trans Neural Syst Rehabil Eng 2021; 29:397-407. [PMID: 33497336 DOI: 10.1109/tnsre.2021.3054551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrical nerve fiber stimulation is a technique widely used in prosthetics and rehabilitation, and its study from a computational point of view can be a useful instrument to support experimental tests. In the last years, there was an increasing interest in computational modeling of neural cells and numerical simulations on nerve fibers stimulation because of its usefulness in forecasting the effect of electrical current stimuli delivered to tissues through implanted electrodes, in the design of optimal stimulus waveforms based on the specific application (i.e., inducing limb movements, sensory feedback or physiological function restoring), and in the evaluation of the current stimuli properties according to the characteristics of the nerves surrounding tissue. Therefore, a review study on the main modeling and computational frameworks adopted to investigate peripheral nerve stimulation is an important instrument to support and drive future research works. To this aim, this paper deals with mathematical models of neural cells with a detailed description of ion channels and numerical simulations using finite element methods to describe the dynamics of electrical stimulation by implanted electrodes in peripheral nerve fibers. In particular, we evaluate different nerve cell models considering different ion channels present in neurons and provide a guideline on multiscale numerical simulations of electrical nerve fibers stimulation.
Collapse
|
5
|
Gamé X, Phé V. [Treatment for refractory non-neurogenic overactive bladder]. Prog Urol 2020; 30:920-930. [PMID: 33220820 DOI: 10.1016/j.purol.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/10/2020] [Accepted: 09/04/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The aim was to synthesize current knowledge on refractory overactive bladder treatments. METHOD A systematic literature review based on PubMed, Embase and Google Scholar was conducted in July 2020. RESULTS Today, refractory overactive bladder treatment includes tibial nerve stimulation, whether percutaneously or transcutaneously, sacral neuromodulation, and botulinum toxin A detrusor injections. These conservative treatments have marginalized surgical treatments, which mainly involve supratrigonal cystectomy with augmentation cystoplasty. Several potential new treatments are being evaluated but can only be currently offered as part of clinical research protocols. CONCLUSION "Conservative" treatments for refractory overactive bladder have been shown to be effective. Other treatments could enrich the treatment options.
Collapse
Affiliation(s)
- X Gamé
- Département d'urologie, transplantation rénale et andrologie, université Paul Sabatier, CHU Rangueil, TSA50032, 31059 Toulouse, France.
| | - V Phé
- Service d'urologie, hôpital Pitié-Salpêtrière, Sorbonne université, AP-HP, Paris, France
| |
Collapse
|
6
|
Lee J, Park E, Kang W, Kim Y, Lee KS, Park SM. An Efficient Noninvasive Neuromodulation Modality for Overactive Bladder Using Time Interfering Current Method. IEEE Trans Biomed Eng 2020; 68:214-224. [PMID: 32746006 DOI: 10.1109/tbme.2020.2995841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The present study aimed to evaluate a new tibial nerve stimulation (TNS) modality, which uses interferential currents, in terms of the stimulation electric field penetration efficiency into the body and physiological effectiveness. METHODS In silico experiments were performed to analyze the penetration efficiency of proposed interferential current therapy (ICT). Based on this, we performed in vivo experiments to measure excitation threshold of ICT for the tibial nerve, which is related to stimulation field near the nerve. Regarding analysis of the physiological effectiveness, in vivo ICT-TNS was performed, and changes in bladder contraction frequency and voiding volume were measured. The penetration efficiency and physiological effectiveness of ICT were evaluated by comparison with those of conventional TNS using transcutaneous electrical nerve stimulation (TENS). RESULTS Simulation results showed that ICT has high penetration efficiency, thereby generating stronger field than TENS. These results are consistent with the in vivo results that nerve excitation threshold of ICT is lower than that of TENS. Moreover, ICT-TNS decreased contraction frequency and increased voiding volume, and its performance was profound compared with that of TENS-TNS. CONCLUSION The proposed ICT is more efficient in inducing the stimulation field near the tibial nerve placed deep inside the body compared with conventional TENS and shows a good clinical effectiveness for TNS. SIGNIFICANCE The high efficiency of ICT increases the safety of noninvasive neurostimulation; therefore, it has clinical potential to become a promising modality for TNS to treat OAB and other peripheral neurostimulations.
Collapse
|
7
|
Roointan S, Tovbis D, Elder C, Yoo PB. Enhanced transcutaneous electrical nerve stimulation achieved by a localized virtual bipole: a computational study of human tibial nerve stimulation. J Neural Eng 2020; 17:026041. [PMID: 32241001 DOI: 10.1088/1741-2552/ab85d3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Electrical neuromodulation is a clinically effective therapeutic instrument, currently expanding into newer indications and larger patient populations. Neuromodulation technologies are also moving towards less invasive approaches to nerve stimulation. In this study, we investigated an enhanced transcutaneous electrical nerve stimulation (eTENS) system that electrically couples a conductive nerve cuff with a conventional TENS electrode. The objectives were to better understand how eTENS achieves lower nerve activation thresholds, and to test the feasibility of applying eTENS in a human model of peripheral nerve stimulation. APPROACH A finite element model (FEM) of the human lower leg was constructed to simulate electrical stimulation of the tibial nerve, comparing TENS and eTENS. Key variables included surface electrode diameter, nerve cuff properties (conductivity, length, thickness), and cuff location. Enhanced neural excitability was predicted by relative excitability (RE > 1), derived using either the activating function (AF) or the nerve activation threshold (MRG model). MAIN RESULTS Simulations revealed that a localized 'virtual bipole' was created on the target nerve, where the isopotential surface of the cuff resulted in large potential differences with the surrounding tissue. The cathodic part (nerve depolarization) of the bipole enhanced neural excitability, predicted by RE values of up to 2.2 (MRG) and 5.5 (AF) when compared to TENS. The MRG model confirmed that action potentials were initiated at the cathodic edge of the nerve cuff. Factors contributing to eTENS were larger surface electrodes, longer cuffs, cuff conductivity (>1×103 S m-1), and cuff position relative to the cathodic surface electrode. SIGNIFICANCE This study provides a theoretical basis for designing and testing eTENS applied to various neural targets and data suggesting function of eTENS in large models of nerve stimulation. Although eTENS carries key advantages over existing technologies, further work is needed to translate this approach into effective clinical applications.
Collapse
Affiliation(s)
- Sohrab Roointan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, Ontario M5S 3G9, Canada
| | | | | | | |
Collapse
|
8
|
Soltanzadeh R, Afsharipour E, Shafai C. Investigation of transcutaneous electrical nerve stimulation improvements with microneedle array electrodes based on multiphysics simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3318. [PMID: 32017406 DOI: 10.1002/cnm.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
This paper investigates microneedle array electrodes for transcutaneous electrical nerve stimulation, and compares their performance with conventional surface electrodes. A three-dimensional model of tissue was developed for finite element multiphysics simulations. Investigations included current density in different depths of a tissue, space constant under electrodes, specific absorption ratio of tissue, selectivity of stimulation, temperature rise, and blood flow. Results showed that microneedle electrodes have up to 10% higher selectivity than the surface electrodes. Furthermore, it was found that stimulation using microneedle electrodes provides more robust current density at different tissue depths compared to the surface electrode stimulation. Microneedle electrodes showed enhanced stimulation parameters, particularly for targeting a specific nerve in a specific depth of a tissue.
Collapse
Affiliation(s)
- Ramin Soltanzadeh
- Biomedical Engineering Graduate Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elnaz Afsharipour
- Electrical and Computer Engineering Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cyrus Shafai
- Electrical and Computer Engineering Department, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Paquette JP, Yoo PB. Recruitment of unmyelinated C-fibers mediates the bladder-inhibitory effects of tibial nerve stimulation in a continuous-fill anesthetized rat model. Am J Physiol Renal Physiol 2019; 317:F163-F171. [PMID: 31141398 DOI: 10.1152/ajprenal.00502.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although percutaneous tibial nerve stimulation is considered a clinically effective therapy for treating overactive bladder, the mechanism by which overactive bladder symptoms are suppressed remains unclear. The goal of the present study was to better understand the role of specific neural inputs (i.e., fiber types) on the bladder-inhibitory effects of tibial nerve stimulation (TNS). In 24 urethane-anesthetized rats, a continuous suprapubic saline infusion model was used to achieve repeated filling and emptying of the bladder. A total of 4 TNS trials (pulse frequency: 5 Hz) were applied in randomized order, where each trial used different amplitude settings: 1) no stimulation (control), 2) Aβ-fiber activation, 3) Aδ-fiber activation, and 4) C-fiber activation. Each stimulation trial was 30 min in duration, with an intertrial washout period of 60-90 min. Our findings showed that TNS evoked statistically significant changes in bladder function (e.g., bladder capacity, residual volume, voiding efficiency, and basal pressure) only at stimulation amplitudes that electrically recruited unmyelinated C-fibers. In a subset of experiments, TNS also resulted in transient episodes of overflow incontinence. It is noted that changes in bladder function occurred only during the poststimulation period. The bladder-inhibitory effects of TNS in a continuous bladder filling model suggests that electrical recruitment of unmyelinated C-fibers has important functional significance. The implications of these findings in percutaneous tibial nerve stimulation therapy should be further investigated.
Collapse
Affiliation(s)
- Jason P Paquette
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario , Canada
| | - Paul B Yoo
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario , Canada.,Department of Electrical and Computer Engineering, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
10
|
Sharan E, Hunter K, Hassouna M, Yoo PB. Characterizing the transcutaneous electrical recruitment of lower leg afferents in healthy adults: implications for non-invasive treatment of overactive bladder. BMC Urol 2018; 18:10. [PMID: 29439703 PMCID: PMC5812114 DOI: 10.1186/s12894-018-0322-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/29/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND As a potential new treatment for overactive bladder (OAB), we investigated the feasibility of non-invasively activating multiple nerve targets in the lower leg. METHODS In healthy participants, surface electrical stimulation (frequency = 20 Hz, pulse width = 200 μs) was used to target the tibial nerve, saphenous nerve, medial plantar nerve, and lateral plantar nerve. At each location, the stimulation amplitude was increased to define the thresholds for evoking (1) cutaneous sensation, (2) target nerve recruitment and (3) maximum tolerance. RESULTS All participants were able to tolerate stimulation amplitudes that were 2.1 ± 0.2 (range = 2.0 to 2.4) times the threshold for activating the target nerve. CONCLUSIONS Non-invasive electrical stimulation can activate neural targets at levels that are consistent with evoking bladder-inhibitory reflex mechanisms. Further work is needed to test the clinical effects of stimulating one or more neural targets in OAB patients.
Collapse
Affiliation(s)
- Eshani Sharan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, ON M5S 3G9 Canada
| | - Kelly Hunter
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, ON M5S 3G9 Canada
| | - Magdy Hassouna
- Division of Urology, Toronto Western Hospital, Toronto, ON Canada
| | - Paul B. Yoo
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, ON M5S 3G9 Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| |
Collapse
|