1
|
Yadav RN, Oravec DJ, Morrison CK, Bevins NB, Rao SD, Yeni YN. Digital wrist tomosynthesis (DWT)-based finite element analysis of ultra-distal radius differentiates patients with and without a history of osteoporotic fracture. Bone 2023; 177:116901. [PMID: 37714502 DOI: 10.1016/j.bone.2023.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Despite effective therapies for those at risk of osteoporotic fracture, low adherence to screening guidelines and limited accuracy of bone mineral density (BMD) in predicting fracture risk preclude identification of those at risk. Because of high adherence to routine mammography, bone health screening at the time of mammography using a digital breast tomosynthesis (DBT) scanner has been suggested as a potential solution. BMD and bone microstructure can be measured from the wrist using a DBT scanner. However, the extent to which biomechanical variables can be derived from digital wrist tomosynthesis (DWT) has not been explored. Accordingly, we measured stiffness from a DWT based finite element (DWT-FE) model of the ultra-distal (UD) radius and ulna, and correlate these to reference microcomputed tomography image based FE (μCT-FE) from five cadaveric forearms. Further, this method is implemented to determine in vivo reproducibility of FE derived stiffness of UD radius and demonstrate the in vivo utility of DWT-FE in bone quality assessment by comparing two groups of postmenopausal women with and without a history of an osteoporotic fracture (Fx; n = 15, NFx; n = 51). Stiffness obtained from DWT and μCT had a strong correlation (R2 = 0.87, p < 0.001). In vivo repeatability error was <5 %. The NFx and Fx groups were not significantly different in DXA derived minimum T-scores (p > 0.3), but stiffness of the UD radius was lower for the Fx group (p < 0.007). Logistic regression models of fracture status with stiffness of the nondominant arm as the predictor were significant (p < 0.01). In conclusion this study demonstrates the feasibility of fracture risk assessment in mammography settings using DWT imaging and FE modeling in vivo. Using this approach, bone and breast screening can be performed in a single visit, with the potential to improve both the prevalence of bone health screening and the accuracy of fracture risk assessment.
Collapse
Affiliation(s)
- Ram N Yadav
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA
| | | | | | | | - Sudhaker D Rao
- Division of Endocrinology, Diabetes and Bone, Mineral Disorders, and Bone, Mineral Research Laboratory, Henry Ford Health, Detroit, MI, USA
| | - Yener N Yeni
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA.
| |
Collapse
|
2
|
Yeni YN, Oravec D, Drost J, Zauel R, Flynn MJ. Stiffness and Strain Properties Derived From Digital Tomosynthesis-Based Digital Volume Correlation Predict Vertebral Strength Independently From Bone Mineral Density. J Biomech Eng 2023; 145:041009. [PMID: 36350266 PMCID: PMC9791669 DOI: 10.1115/1.4056196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Vertebral fractures are the most common osteoporotic fractures, but their prediction using standard bone mineral density (BMD) measurements from dual energy X-ray absorptiometry (DXA) is limited in accuracy. Stiffness, displacement, and strain distribution properties derived from digital tomosynthesis-based digital volume correlation (DTS-DVC) have been suggested as clinically measurable metrics of vertebral bone quality. However, the extent to which these properties correlate to vertebral strength is unknown. To establish this relationship, two independent experiments, one examining isolated T11 and the other examining L3 vertebrae within the L2-L4 segments from cadaveric donors were utilized. Following DXA and DTS imaging, the specimens were uniaxially compressed to fracture. BMD, bone mineral content (BMC), and bone area were recorded for the anteroposterior and lateromedial views from DXA, stiffness, endplate to endplate displacement and distribution statistics of intravertebral strains were calculated from DTS-DVC and vertebral strength was measured from mechanical tests. Regression models were used to examine the relationships of strength with the other variables. Correlations of BMD with vertebral strength varied between experimental groups (R2adj = 0.19-0.78). DTS-DVC derived properties contributed to vertebral strength independently from BMD measures (increasing R2adj to 0.64-0.95). DTS-DVC derived stiffness was the best single predictor (R2adj = 0.66, p < 0.0001) and added the most to BMD in models of vertebral strength for pooled T11 and L3 specimens (R2adj = 0.95, p < 0.0001). These findings provide biomechanical relevance to DTS-DVC calculated properties of vertebral bone and encourage further efforts in the development of the DTS-DVC approach as a clinical tool.
Collapse
Affiliation(s)
- Yener N. Yeni
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Daniel Oravec
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Joshua Drost
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Roger Zauel
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Michael J. Flynn
- Department of Radiology, Henry Ford Hospital, One Ford Place, Suite 2F, Detroit, MI 48202
| |
Collapse
|
3
|
Kusins J, Knowles N, Targosinski J, Columbus M, Athwal GS, Ferreira L. 3D strain analysis of trabecular bone within the osteoarthritic humeral head subjected to stepwise compressive loads. J Mech Behav Biomed Mater 2021; 125:104922. [PMID: 34740010 DOI: 10.1016/j.jmbbm.2021.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/30/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
Understanding the local mechanical properties of trabecular bone at the humeral head-neck junction is essential for the safe design of stemless humeral head implants. Recent advancements in mechanical testing coupled with volumetric imaging have allowed for the ability to quantify full-field strain distributions throughout trabecular bone. Within this study, digital volume correlation (DVC) was applied to micro-computed tomography images to investigate the local load carrying characteristics of trabecular bone within osteoarthritic (OA) humeral heads subjected to stepwise loading. A multi-pegged indenter was used to transfer loads from a custom-fabricated loading apparatus to trabecular bone on the resection surface of OA humeral head osteotomies retrieved from patients undergoing total shoulder arthroplasty (TSA). In regions of trabecular bone that eventually fractured, third principal strains were significantly higher (95th percentile third principal strain = -12,558 μstrain, p < 0.001) compared to regions that did not fracture (95th percentile third principal strain = -7,806 μstrain). As well, bone volume fraction (p = 0.012), trabecular separation (p = 0.014), and trabecular number (p = 0.007) were found to influence the likelihood of trabecular bone fracture. Collectively, this work has led to a deeper understanding of the local load carrying characteristics of trabecular bone specific to patients receiving TSA for osteoarthritis.
Collapse
Affiliation(s)
- Jonathan Kusins
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada; Roth
- McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - Nikolas Knowles
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Jakub Targosinski
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada; Roth
- McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - Melanie Columbus
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
| | - George S Athwal
- Roth
- McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - Louis Ferreira
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada; Roth
- McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada.
| |
Collapse
|
4
|
Oravec D, Drost J, Zauel R, Flynn MJ, Yeni YN. Assessment of Intravertebral Mechanical Strains and Cancellous Bone Texture Under Load Using a Clinically Available Digital Tomosynthesis Modality. J Biomech Eng 2021; 143:101011. [PMID: 34041529 PMCID: PMC8299817 DOI: 10.1115/1.4051280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/14/2021] [Indexed: 11/08/2022]
Abstract
Vertebral fractures are the most common osteoporotic fractures, but clinical means for assessment of vertebral bone integrity are limited in accuracy, as they typically use surrogate measures that are indirectly related to mechanics. The objective of this study was to examine the extent to which intravertebral strain distributions and changes in cancellous bone texture generated by a load of physiological magnitude can be characterized using a clinically available imaging modality. We hypothesized that digital tomosynthesis-based digital volume correlation (DTS-DVC) and image texture-based metrics of cancellous bone microstructure can detect development of mechanical strains under load. Isolated cadaveric T11 vertebrae and L2-L4 vertebral segments were DTS imaged in a nonloaded state and under physiological load levels. Axial strain, maximum principal strain, maximum compressive and tensile principal strains, and von Mises equivalent strain were calculated using the DVC technique. The change in textural parameters (line fraction deviation, anisotropy, and fractal parameters) under load was calculated within the cancellous centrum. The effect of load on measured strains and texture variables was tested using mixed model analysis of variance, and relationships of strain and texture variables with donor age, bone density parameters, and bone size were examined using regression models. Magnitudes and heterogeneity of intravertebral strain measures correlated with applied loading and were significantly different from background noise. Image texture parameters were found to change with applied loading, but these changes were not observed in the second experiment testing L2-L4 segments. DTS-DVC-derived strains correlated with age more strongly than did bone mineral density (BMD) for T11.
Collapse
Affiliation(s)
- Daniel Oravec
- Bone & Joint Center, Henry Ford Hospital, Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Joshua Drost
- Bone & Joint Center, Henry Ford Hospital, Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Roger Zauel
- Bone & Joint Center, Henry Ford Hospital, Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Michael J. Flynn
- Department of Radiology, Henry Ford Hospital, One Ford Place, Suite 2F, Detroit, MI 48202
| | - Yener N. Yeni
- Bone & Joint Center, Henry Ford Hospital, Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| |
Collapse
|