1
|
López-Chicón P, Rodríguez Martínez JI, Castells-Sala C, Lopez-Puerto L, Ruiz-Ponsell L, Fariñas O, Vilarrodona A. Pericardium decellularization in a one-day, two-step protocol. Mol Cell Biochem 2024:10.1007/s11010-024-05086-x. [PMID: 39251464 DOI: 10.1007/s11010-024-05086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
Scaffolds used in tissue engineering can be obtained from synthetic or natural materials, always focusing the effort on mimicking the extracellular matrix of human native tissue. In this study, a decellularization process is used to obtain an acellular, biocompatible non-cytotoxic human pericardium graft as a bio-substitute. An enzymatic and hypertonic method was used to decellularize the pericardium. Histological analyses were performed to determine the absence of cells and ensure the integrity of the extracellular matrix (ECM). In order to measure the effect of the decellularization process on the tissue's biological and mechanical properties, residual genetic content and ECM biomolecules (collagen, elastin, and glycosaminoglycan) were quantified and the tissue's tensile strength was tested. Preservation of the biomolecules, a residual genetic content below 50 ng/mg dry tissue, and maintenance of the histological structure provided evidence for the efficacy of the decellularization process, while preserving the ECM. Moreover, the acellular tissue retains its mechanical properties, as shown by the biomechanical tests. Our group has shown that the acellular pericardial matrix obtained through the super-fast decellularization protocol developed recently retains the desired biomechanical and structural properties, suggesting that it is suitable for a broad range of clinical indications.
Collapse
Affiliation(s)
- P López-Chicón
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - J I Rodríguez Martínez
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - C Castells-Sala
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain.
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain.
| | - L Lopez-Puerto
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| | - L Ruiz-Ponsell
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - O Fariñas
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - A Vilarrodona
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| |
Collapse
|
2
|
Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev 2024; 211:115347. [PMID: 38844005 DOI: 10.1016/j.addr.2024.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Viscus Biologics LLC, 2603 Miles Road, Cleveland, OH 44128, USA
| | - Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Ahmed K, Tauseef H, Ainuddin JA, Zafar M, Khan I, Salim A, Mirza MR, Mohiuddin OA. Assessment of the proteome profile of decellularized human amniotic membrane and its biocompatibility with umbilical cord-derived mesenchymal stem cells. J Biomed Mater Res A 2024; 112:1041-1056. [PMID: 38380793 DOI: 10.1002/jbm.a.37685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC). Proteome profiles of decellularized hAM (D-hAM) were compared with hAM, and gene ontology (GO) enrichment analysis was performed. Proteomic data revealed that D-hAM retained a total of 249 proteins, predominantly comprised of extracellular matrix proteins including collagens (collagen I, collagen IV, collagen VI, collagen VII, and collagen XII), proteoglycans (biglycan, decorin, lumican, mimecan, and versican), glycoproteins (dermatopontin, fibrinogen, fibrillin, laminin, and vitronectin), and growth factors including transforming growth factor beta (TGF-β) and fibroblast growth factor (FGF) while eliminated most of the intracellular proteins. Scanning electron microscopy was used to analyze the epithelial and basal surfaces of D-hAM. The D-hAM displayed variability in fibril morphology and porosity as compared with hAM, showing loosely packed collagen fibers and prominent large pore areas on the basal side of D-hAM. Both sides of D-hAM supported the growth and proliferation of hUC-MSC. Comparative investigations, however, demonstrated that the basal side of D-hAM displayed higher hUC-MSC proliferation than the epithelial side. These findings highlight the importance of understanding the micro-environmental differences between the two sides of D-hAM while optimizing cell-based therapeutic applications.
Collapse
Affiliation(s)
- Kainat Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Haadia Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Omair Anwar Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Shang Y, Wang G, Zhen Y, Liu N, Nie F, Zhao Z, Li H, An Y. Application of decellularization-recellularization technique in plastic and reconstructive surgery. Chin Med J (Engl) 2023; 136:2017-2027. [PMID: 36752783 PMCID: PMC10476794 DOI: 10.1097/cm9.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 02/09/2023] Open
Abstract
ABSTRACT In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.
Collapse
Affiliation(s)
- Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| |
Collapse
|
5
|
Pérez ML, Castells-Sala C, López-Chicón P, Nieto-Nicolau N, Aiti A, Fariñas O, Casaroli-Marano RP, Porta O, Vilarrodona A. Fast protocol for the processing of split-thickness skin into decellularized human dermal matrix. Tissue Cell 2021; 72:101572. [PMID: 34119882 DOI: 10.1016/j.tice.2021.101572] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dermal scaffolds for tissue regeneration are nowadays an effective alternative in not only wound healing surgeries but also breast reconstruction, abdominal wall reconstruction and tendon reinforcement. The present study describes the development of a decellularization protocol applied to human split-thickness skin from cadaveric donors to obtain dermal matrix using an easy and quick procedure. METHODS Complete split-thickness donor was decellularized through the combination of hypertonic and enzymatic methods. To evaluate the absence of epidermis and dermal cells, and ensure the integrity of the extracellular matrix (ECM) structure, histological analysis was performed. Residual genetic content and ECM biomolecules (collagen, elastin, and glycosaminoglycan) were quantified and tensile strength was tested to measure the effect of the decellularization technique on the mechanical properties of the tissue. RESULTS Biomolecules quantification, residual genetic content (below 50 ng/mg dry tissue) and histological structure assessment showed the efficacy of the decellularization process and the preservation of the ECM. The biomechanical tests confirmed the preservation of native properties in the acellular tissue. CONCLUSIONS The acellular dermal matrix obtained from whole split-thickness skin donor with the newly developed decellualrization protocol, maintains the desired biomechanical and structural properties and represents a viable treatment option for patients.
Collapse
Affiliation(s)
- M L Pérez
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain; Vall Hebron Institute of Research (VHIR), Barcelona, Spain.
| | - C Castells-Sala
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain; Vall Hebron Institute of Research (VHIR), Barcelona, Spain.
| | - P López-Chicón
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - N Nieto-Nicolau
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain; Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| | - A Aiti
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - O Fariñas
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - R P Casaroli-Marano
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain; Department of Surgery, School of Medicine & Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - O Porta
- Gynaecology and Obstetrics Service, Hospital de la Santa Creu i Sant Pau, Spain
| | - A Vilarrodona
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| |
Collapse
|