1
|
Valente R, Mourato A, Xavier J, Sousa P, Domingues T, Tavares P, Avril S, Tomás A, Fragata J. Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review. Bioengineering (Basel) 2024; 11:745. [PMID: 39199703 PMCID: PMC11351783 DOI: 10.3390/bioengineering11080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Experimental protocols are fundamental for quantifying the mechanical behaviour of soft tissue. These data are crucial for advancing the understanding of soft tissue mechanics, developing and calibrating constitutive models, and informing the development of more accurate and predictive computational simulations and artificial intelligence tools. This paper offers a comprehensive review of experimental tests conducted on soft aortic tissues, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, based on the Scopus, Web of Science, IEEE, Google Scholar and PubMed databases. This study includes a detailed overview of the test method protocols, providing insights into practical methodologies, specimen preparation and full-field measurements. The review also briefly discusses the post-processing methods applied to extract material parameters from experimental data. In particular, the results are analysed and discussed providing representative domains of stress-strain curves for both uniaxial and biaxial tests on human aortic tissue.
Collapse
Affiliation(s)
- Rodrigo Valente
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - André Mourato
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
- Intelligent Systems Associate Laboratory, LASI, 4800-058 Guimarães, Portugal
| | - Pedro Sousa
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Tiago Domingues
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Paulo Tavares
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, Inserm, Sainbiose U1059, Campus Santé Innovation, 10, rue de la Marandière, 42270 Saint-Priest-en-Jarez, France;
| | - António Tomás
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
| | - José Fragata
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
- Department of Surgery and Human Morphology, NOVA Medical School, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisboa, Portugal
| |
Collapse
|
2
|
Gasparotti E, Vignali E, Quartieri S, Lazzeri R, Celi S. Numerical investigation on circular and elliptical bulge tests for inverse soft tissue characterization. Biomech Model Mechanobiol 2023; 22:1697-1707. [PMID: 37405537 DOI: 10.1007/s10237-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023]
Abstract
The acquisition of insights concerning the mechanobiology of aneurysmatic aortic tissues is an important field of investigation. The complete characterization of aneurysm mechanical behaviour can be carried out by biaxial experimental tests on ex vivo specimens. In literature, several works proposed bulge inflation tests as a valid method to analyse aneurysmatic tissue. Bulge test data processing requires the adoption of digital image correlation and inverse analysis approaches to estimate strain and stress distributions, respectively. In this context, however, the accuracy of inverse analysis method has not been evaluated yet. This aspect appears particularly interesting given the anisotropic behaviour of the soft tissue and the possibility to adopt different die geometries. The goal of this study is to provide an accuracy characterization of the inverse analysis applied to the bulge test technique using a numerical approach. In particular, different cases of bulge inflation were simulated in a finite element environment as a reference. To investigate the effect of tissue anisotropic degree and bulge die geometries (circular and elliptical), different input parameters were considered to obtain multiple test cases. The specimen deformed shapes, resulting from the reference finite element simulations, were then analysed through an inverse analysis approach to produce an estimation of stress distributions. The estimated stresses were, at last, compared with the values from the reference finite element simulations. The results demonstrated that the circular die geometry produces a satisfactory estimation accuracy only under certain conditions of material quasi-isotropy. On the other hand, the choice of an elliptical bulge die was proven to be more suitable for the analysis of anisotropic tissues.
Collapse
Affiliation(s)
- Emanuele Gasparotti
- BioCardioLab, Bioengineering Unit, Heart Hospital, Fondazione CNR - Regione Toscana G. Monasterio, Via Aurelia Sud, 54100, Massa, Italy
| | - Emanuele Vignali
- BioCardioLab, Bioengineering Unit, Heart Hospital, Fondazione CNR - Regione Toscana G. Monasterio, Via Aurelia Sud, 54100, Massa, Italy
| | - Stefano Quartieri
- BioCardioLab, Bioengineering Unit, Heart Hospital, Fondazione CNR - Regione Toscana G. Monasterio, Via Aurelia Sud, 54100, Massa, Italy
- Civil and Industrial Engineering Department, University of Pisa, Largo Lucio Lazzarino, 2, 56122, Pisa, Italy
| | - Roberta Lazzeri
- Civil and Industrial Engineering Department, University of Pisa, Largo Lucio Lazzarino, 2, 56122, Pisa, Italy
| | - Simona Celi
- BioCardioLab, Bioengineering Unit, Heart Hospital, Fondazione CNR - Regione Toscana G. Monasterio, Via Aurelia Sud, 54100, Massa, Italy.
| |
Collapse
|
3
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
4
|
Uncertainty Quantification in the In Vivo Image-Based Estimation of Local Elastic Properties of Vascular Walls. J Cardiovasc Dev Dis 2023; 10:jcdd10030109. [PMID: 36975873 PMCID: PMC10058982 DOI: 10.3390/jcdd10030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Patient-specific computational models are a powerful tool for planning cardiovascular interventions. However, the in vivo patient-specific mechanical properties of vessels represent a major source of uncertainty. In this study, we investigated the effect of uncertainty in the elastic module (E) on a Fluid–Structure Interaction (FSI) model of a patient-specific aorta. Methods: The image-based χ-method was used to compute the initial E value of the vascular wall. The uncertainty quantification was carried out using the generalized Polynomial Chaos (gPC) expansion technique. The stochastic analysis was based on four deterministic simulations considering four quadrature points. A deviation of about ±20% on the estimation of the E value was assumed. Results: The influence of the uncertain E parameter was evaluated along the cardiac cycle on area and flow variations extracted from five cross-sections of the aortic FSI model. Results of stochastic analysis showed the impact of E in the ascending aorta while an insignificant effect was observed in the descending tract. Conclusions: This study demonstrated the importance of the image-based methodology for inferring E, highlighting the feasibility of retrieving useful additional data and enhancing the reliability of in silico models in clinical practice.
Collapse
|
5
|
Celi S, Gasparotti E, Capellini K, Bardi F, Scarpolini MA, Cavaliere C, Cademartiri F, Vignali E. An image-based approach for the estimation of arterial local stiffness in vivo. Front Bioeng Biotechnol 2023; 11:1096196. [PMID: 36793441 PMCID: PMC9923115 DOI: 10.3389/fbioe.2023.1096196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The analysis of mechanobiology of arterial tissues remains an important topic of research for cardiovascular pathologies evaluation. In the current state of the art, the gold standard to characterize the tissue mechanical behavior is represented by experimental tests, requiring the harvesting of ex-vivo specimens. In recent years though, image-based techniques for the in vivo estimation of arterial tissue stiffness were presented. The aim of this study is to define a new approach to provide local distribution of arterial stiffness, estimated as the linearized Young's Modulus, based on the knowledge of in vivo patient-specific imaging data. In particular, the strain and stress are estimated with sectional contour length ratios and a Laplace hypothesis/inverse engineering approach, respectively, and then used to calculate the Young's Modulus. After describing the method, this was validated by using a set of Finite Element simulations as input. In particular, idealized cylinder and elbow shapes plus a single patient-specific geometry were simulated. Different stiffness distributions were tested for the simulated patient-specific case. After the validation from Finite Element data, the method was then applied to patient-specific ECG-gated Computed Tomography data by also introducing a mesh morphing approach to map the aortic surface along the cardiac phases. The validation process revealed satisfactory results. In the simulated patient-specific case, root mean square percentage errors below 10% for the homogeneous distribution and below 20% for proximal/distal distribution of stiffness. The method was then successfully used on the three ECG-gated patient-specific cases. The resulting distributions of stiffness exhibited significant heterogeneity, nevertheless the resulting Young's moduli were always contained within the 1-3 MPa range, which is in line with literature.
Collapse
Affiliation(s)
- Simona Celi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy,*Correspondence: Simona Celi,
| | - Emanuele Gasparotti
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy
| | - Katia Capellini
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy
| | - Francesco Bardi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy,Mines Saint-Etienne, Universit’e de Lyon, INSERM, SaInBioSE U1059, Lyon, France
| | - Martino Andrea Scarpolini
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy,Dipartimento di Ingegneria Industriale, Università “Tor Vergata”, Roma, Italy
| | | | | | - Emanuele Vignali
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy
| |
Collapse
|
6
|
Introduction of a Novel Image-Based and Non-Invasive Method for the Estimation of Local Elastic Properties of Great Vessels. ELECTRONICS 2022. [DOI: 10.3390/electronics11132055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: In the context of a growing demand for the use of in silico models to meet clinical requests, image-based methods play a crucial role. In this study, we present a parametric equation able to estimate the elasticity of vessel walls, non-invasively and indirectly, from information uniquely retrievable from imaging. Methods: A custom equation was iteratively refined and tuned from the simulations of a wide range of different vessel models, leading to the definition of an indirect method able to estimate the elastic modulus E of a vessel wall. To test the effectiveness of the predictive capability to infer the E value, two models with increasing complexity were used: a U-shaped vessel and a patient-specific aorta. Results: The original formulation was demonstrated to deviate from the ground truth, with a difference of 89.6%. However, the adoption of our proposed equation was found to significantly increase the reliability of the estimated E value for a vessel wall, with a mean percentage error of 9.3% with respect to the reference values. Conclusion: This study provides a strong basis for the definition of a method able to estimate local mechanical information of vessels from data easily retrievable from imaging, thus potentially increasing the reliability of in silico cardiovascular models.
Collapse
|
7
|
Celi S, Vignali E, Capellini K, Gasparotti E. On the Role and Effects of Uncertainties in Cardiovascular in silico Analyses. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:748908. [PMID: 35047960 PMCID: PMC8757785 DOI: 10.3389/fmedt.2021.748908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
The assessment of cardiovascular hemodynamics with computational techniques is establishing its fundamental contribution within the world of modern clinics. Great research interest was focused on the aortic vessel. The study of aortic flow, pressure, and stresses is at the basis of the understanding of complex pathologies such as aneurysms. Nevertheless, the computational approaches are still affected by sources of errors and uncertainties. These phenomena occur at different levels of the computational analysis, and they also strongly depend on the type of approach adopted. With the current study, the effect of error sources was characterized for an aortic case. In particular, the geometry of a patient-specific aorta structure was segmented at different phases of a cardiac cycle to be adopted in a computational analysis. Different levels of surface smoothing were imposed to define their influence on the numerical results. After this, three different simulation methods were imposed on the same geometry: a rigid wall computational fluid dynamics (CFD), a moving-wall CFD based on radial basis functions (RBF) CFD, and a fluid-structure interaction (FSI) simulation. The differences of the implemented methods were defined in terms of wall shear stress (WSS) analysis. In particular, for all the cases reported, the systolic WSS and the time-averaged WSS (TAWSS) were defined.
Collapse
Affiliation(s)
- Simona Celi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Emanuele Vignali
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Katia Capellini
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Vignali E, Gasparotti E, Celi S, Avril S. Fully-Coupled FSI Computational Analyses in the Ascending Thoracic Aorta Using Patient-Specific Conditions and Anisotropic Material Properties. Front Physiol 2021; 12:732561. [PMID: 34744774 PMCID: PMC8564074 DOI: 10.3389/fphys.2021.732561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Computational hemodynamics has become increasingly important within the context of precision medicine, providing major insight in cardiovascular pathologies. However, finding appropriate compromise between speed and accuracy remains challenging in computational hemodynamics for an extensive use in decision making. For example, in the ascending thoracic aorta, interactions between the blood and the aortic wall must be taken into account for the sake of accuracy, but these fluid structure interactions (FSI) induce significant computational costs, especially when the tissue exhibits a hyperelastic and anisotropic response. The objective of the current study is to use the Small On Large (SOL) theory to linearize the anisotropic hyperelastic behavior in order to propose a reduced-order model for FSI simulations of the aorta. The SOL method is tested for fully-coupled FSI simulations in a patient-specific aortic geometry presenting an Ascending Thoracic Aortic Aneurysm (aTAA). The same model is also simulated with a fully-coupled FSI with non-linear material behavior, without SOL linearization. Eventually, the results and computational times with and without the SOL are compared. The SOL approach is demonstrated to provide a significant reduction of computational costs for FSI analysis in the aTAA, and the results in terms of stress state distribution are comparable. The method is implemented in ANSYS and will be further evaluated for clinical applications.
Collapse
Affiliation(s)
- Emanuele Vignali
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Simona Celi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Stéphane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, SaInBioSE U1059, Saint-Étienne, France
| |
Collapse
|