1
|
Li X, Huo R, Li L, Cherif H, Lan X, Weber MH, Haglund L, Li J. Composite Hydrogel Sealants for Annulus Fibrosus Repair. ACS Biomater Sci Eng 2024; 10:5094-5107. [PMID: 38979636 DOI: 10.1021/acsbiomaterials.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intervertebral disc (IVD) herniation is a leading cause of disability and lower back pain, causing enormous socioeconomic burdens. The standard of care for disc herniation is nucleotomy, which alleviates pain but does not repair the annulus fibrosus (AF) defect nor recover the biomechanical function of the disc. Existing bioadhesives for AF repair are limited by insufficient adhesion and significant mechanical and geometrical mismatch with the AF tissue, resulting in the recurrence of protrusion or detachment of bioadhesives. Here, we report a composite hydrogel sealant constructed from a composite of a three-dimensional (3D)-printed thermoplastic polyurethane (TPU) mesh and tough hydrogel. We tailored the fiber angle and volume fraction of the TPU mesh design to match the angle-ply structure and mechanical properties of native AF. Also, we proposed and tested three types of geometrical design of the composite hydrogel sealant to match the defect shape and size. Our results show that the sealant could mimic native AF in terms of the elastic modulus, flexural modulus, and fracture toughness and form strong adhesion with the human AF tissue. The bovine IVD tests show the effectiveness of the composite hydrogel sealant for AF repair and biomechanics recovery and for preventing herniation with its heightened stiffness and superior adhesion. By harnessing the combined capabilities of 3D printing and bioadhesives, these composite hydrogel sealants demonstrate promising potential for diverse applications in tissue repair and regeneration.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec H3A 0C3, Canada
| | - Ran Huo
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
| | - Xiaoyi Lan
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec H3A 0C3, Canada
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
- Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Montreal, Quebec H4A 0A9, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec H3A 0C3, Canada
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
2
|
Sabouri P, Hashemi A. Effect of loading direction and anatomical location on the ultimate tensile stress, fracture toughness, and failure patterns of knee meniscus. Knee 2024; 48:120-127. [PMID: 38579436 DOI: 10.1016/j.knee.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Rupture of the knee menisci is a common injury that can have implications for other conditions, such as osteoarthritis. The fracture toughness of soft tissue (Jc) is a mechanical property that characterizes its resistance to tear extension. To date, Jc of the meniscus has not been quantified. METHODS Cyclic tensile tests were conducted on meniscus samples to determine Jc and explore its characteristics. Initially, the study investigated the impact of an initial notch on the ultimate tensile stress. This allowed for an understanding of how the presence of a notch affects its structural integrity. Subsequently, Jc was measured in both the radial and circumferential directions to assess its loading direction dependency. Furthermore, the study assessed the effect of anatomical location by comparing samples collected from the femoral and tibial layers. RESULTS Defect tolerance of the meniscus is influenced by the loading direction. In the circumferential direction, the presence of an initial notch did not affect the ultimate stress, and no crack expansion was observed. In radial samples with a notch length of 40% or more of the total width, crack propagation occurred, leading to a decrease in the ultimate stress (p< 0.01). Additionally, Jc was found to be higher in the femoral layer compared to the tibial layer (p= 0.017). CONCLUSION The study also examined the failure patterns of the meniscus to enhance our understanding of its pathology. These insights contribute to a better comprehension of meniscus injuries and can aid in the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Pouya Sabouri
- Biomechanical Engineering Group, Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Ata Hashemi
- Biomechanical Engineering Group, Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran.
| |
Collapse
|