1
|
Huttinga NRF, Bruijnen T, van den Berg CAT, Sbrizzi A. Gaussian Processes for real-time 3D motion and uncertainty estimation during MR-guided radiotherapy. Med Image Anal 2023; 88:102843. [PMID: 37245435 DOI: 10.1016/j.media.2023.102843] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Respiratory motion during radiotherapy causes uncertainty in the tumor's location, which is typically addressed by an increased radiation area and a decreased dose. As a result, the treatments' efficacy is reduced. The recently proposed hybrid MR-linac scanner holds the promise to efficiently deal with such respiratory motion through real-time adaptive MR-guided radiotherapy (MRgRT). For MRgRT, motion-fields should be estimated from MR-data and the radiotherapy plan should be adapted in real-time according to the estimated motion-fields. All of this should be performed with a total latency of maximally 200 ms, including data acquisition and reconstruction. A measure of confidence in such estimated motion-fields is highly desirable, for instance to ensure the patient's safety in case of unexpected and undesirable motion. In this work, we propose a framework based on Gaussian Processes to infer 3D motion-fields and uncertainty maps in real-time from only three readouts of MR-data. We demonstrated an inference frame rate up to 69 Hz including data acquisition and reconstruction, thereby exploiting the limited amount of required MR-data. Additionally, we designed a rejection criterion based on the motion-field uncertainty maps to demonstrate the framework's potential for quality assurance. The framework was validated in silico and in vivo on healthy volunteer data (n=5) acquired using an MR-linac, thereby taking into account different breathing patterns and controlled bulk motion. Results indicate end-point-errors with a 75th percentile below 1 mm in silico, and a correct detection of erroneous motion estimates with the rejection criterion. Altogether, the results show the potential of the framework for application in real-time MR-guided radiotherapy with an MR-linac.
Collapse
Affiliation(s)
- Niek R F Huttinga
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, The Netherlands; Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, The Netherlands.
| | - Tom Bruijnen
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, The Netherlands; Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, The Netherlands; Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, The Netherlands
| | - Alessandro Sbrizzi
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, The Netherlands; Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
2
|
Wei R, Chen J, Liang B, Chen X, Men K, Dai J. Real-time 3D MRI reconstruction from cine-MRI using unsupervised network in MRI-guided radiotherapy for liver cancer. Med Phys 2022. [PMID: 36510442 DOI: 10.1002/mp.16141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Respiration has a major impact on the accuracy of radiation treatment for thorax and abdominal tumours. Instantaneous volumetric imaging could provide precise knowledge of tumour and normal organs' three-dimensional (3D) movement, which is the key to reducing the negative effect of breathing motion. Therefore, this study proposed a real-time 3D MRI reconstruction method from cine-MRI using an unsupervised network. METHODS AND MATERIALS Cine-MRI and setup 3D-MRI from eight patients with liver cancer were utilized to establish and validate the deep learning network for 3D-MRI reconstruction. Unlike previous methods that required 4D-MRI for network training, the proposed method utilized a reference 3D-MRI and cine-MRI to generate the training data. Then, a network was trained in an unsupervised manner to estimate the relationship between the cine-MRI acquired on coronal plane and deformation vector field (DVF) that describes the patient's breathing motion. After the training process, the coronal cine-MRI were inputted into the network, and the corresponding DVF was obtained. By wrapping the reference 3D-MRI with the generated DVF, the 3D-MRI could be reconstructed. RESULTS The reconstructed 3D-MRI slices were compared with the corresponding phase-sorted cine-MRI using dice similarity coefficients (DSCs) of liver contours and blood vessel localization error. In all patients, the liver DSC had mean value >96.1% and standard deviation < 1.3%; the blood vessel localization error had mean value <2.6 mm, and standard deviation was <2.0 mm. Moreover, the time for 3D-MRI reconstruction was approximately 100 ms. These results indicated that the proposed method could accurately reconstruct the 3D-MRI in real time. CONCLUSIONS The proposed method could accurately reconstruct the 3D-MRI from cine-MRI in real time. This method has great potential in improving the accuracy of radiotherapy for moving tumours.
Collapse
Affiliation(s)
- Ran Wei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China
| | - Jiayun Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyuan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Huttinga NRF, Bruijnen T, Van Den Berg CAT, Sbrizzi A. Real-Time Non-Rigid 3D Respiratory Motion Estimation for MR-Guided Radiotherapy Using MR-MOTUS. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:332-346. [PMID: 34520351 DOI: 10.1109/tmi.2021.3112818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The MR-Linac is a combination of an MR-scanner and radiotherapy linear accelerator (Linac) which holds the promise to increase the precision of radiotherapy treatments with MR-guided radiotherapy by monitoring motion during radiotherapy with MRI, and adjusting the radiotherapy plan accordingly. Optimal MR-guidance for respiratory motion during radiotherapy requires MR-based 3D motion estimation with a latency of 200-500 ms. Currently this is still challenging since typical methods rely on MR-images, and are therefore limited by the 3D MR-imaging latency. In this work, we present a method to perform non-rigid 3D respiratory motion estimation with 170 ms latency, including both acquisition and reconstruction. The proposed method called real-time low-rank MR-MOTUS reconstructs motion-fields directly from k -space data, and leverages an explicit low-rank decomposition of motion-fields to split the large scale 3D+t motion-field reconstruction problem posed in our previous work into two parts: (I) a medium-scale offline preparation phase and (II) a small-scale online inference phase which exploits the results of the offline phase for real-time computations. The method was validated on free-breathing data of five volunteers, acquired with a 1.5T Elekta Unity MR-Linac. Results show that the reconstructed 3D motion-field are anatomically plausible, highly correlated with a self-navigation motion surrogate ( R=0.975 ±0.0110 ), and can be reconstructed with a total latency of 170 ms that is sufficient for real-time MR-guided abdominal radiotherapy.
Collapse
|
4
|
Fransson S, Tilly D, Ahnesjö A, Nyholm T, Strand R. Intrafractional motion models based on principal components in Magnetic Resonance guided prostate radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 20:17-22. [PMID: 34660917 PMCID: PMC8502906 DOI: 10.1016/j.phro.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Background and purpose Devices that combine an MR-scanner with a Linac for radiotherapy, referred to as MR-Linac systems, introduce the possibility to acquire high resolution images prior and during treatment. Hence, there is a possibility to acquire individualised learning sets for motion models for each fraction and the construction of intrafractional motion models. We investigated the feasibility for a principal component analysis (PCA) based, intrafractional motion model of the male pelvic region. Materials and methods 4D-scans of nine healthy male volunteers were utilized, FOV covering the entire pelvic region including prostate, bladder and rectum with manual segmentation of each organ at each time frame. Deformable image registration with an optical flow algorithm was performed for each subject with the first time frame as reference. PCA was performed on a subset of the resulting displacement vector fields to construct individualised motion models evaluated on the remaining fields. Results The registration algorithm produced accurate registration result, in general DICE overlap >0.95 across all time frames. Cumulative variance of the eigen values from the PCA showed that 50% or more of the motion is explained in the first component for all subjects. However, the size and direction for the components differed between subjects. Adding more than two components did not improve the accuracy significantly and the model was able to explain motion down to about 1 mm. Conclusions An individualised intrafractional male pelvic motion model is feasible. Geometric accuracy was about 1 mm based on 1–2 principal components.
Collapse
Affiliation(s)
- Samuel Fransson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Physics, Akademiska Hospital, Uppsala, Sweden
- Corresponding author at: Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - David Tilly
- Department of Medical Physics, Akademiska Hospital, Uppsala, Sweden
- Elekta Instruments AB, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anders Ahnesjö
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tufve Nyholm
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Robin Strand
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Mezheritsky T, Romaguera LV, Le W, Kadoury S. Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy. Med Image Anal 2021; 75:102260. [PMID: 34670149 DOI: 10.1016/j.media.2021.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.
Collapse
Affiliation(s)
- Tal Mezheritsky
- MedICAL Laboratory, École Polytechnique de Montréal, Montréal, Canada.
| | | | | | - Samuel Kadoury
- MedICAL Laboratory, École Polytechnique de Montréal, Montréal, Canada; CHUM Research Center, Montréal, Canada
| |
Collapse
|
6
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200207. [PMID: 34218675 PMCID: PMC8255946 DOI: 10.1098/rsta.2020.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Irene Polycarpou
- Department of Health Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charalampos Tsoumpas
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Imaging Science Department, University of Leeds, West Yorkshire, UK
- Invicro, London, UK
| |
Collapse
|
7
|
Wikström KA, Isacsson UM, Nilsson KM, Ahnesjö A. Evaluation of four surface surrogates for modeling lung tumor positions over several fractions in radiotherapy. J Appl Clin Med Phys 2021; 22:103-112. [PMID: 34258853 PMCID: PMC8425865 DOI: 10.1002/acm2.13351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Patient breathing during lung cancer radiotherapy reduces the ability to keep a sharp dose gradient between tumor and normal tissues. To mitigate detrimental effects, accurate information about the tumor position is required. In this work, we evaluate the errors in modeled tumor positions over several fractions of a simple tumor motion model driven by a surface surrogate measure and its time derivative. The model is tested with respect to four different surface surrogates and a varying number of surrogate and image acquisitions used for model training. Fourteen patients were imaged 100 times with cine CT, at three sessions mimicking a planning session followed by two treatment fractions. Patient body contours were concurrently detected by a body surface laser scanning system BSLS from which four surface surrogates were extracted; thoracic point TP, abdominal point AP, the radial distance mean RDM, and a surface derived volume SDV. The motion model was trained on session 1 and evaluated on sessions 2 and 3 by comparing modeled tumor positions with measured positions from the cine images. The number of concurrent surrogate and image acquisitions used in the training set was varied, and its impact on the final result was evaluated. The use of AP as a surface surrogate yielded the smallest error in modeled tumor positions. The mean deviation between modeled and measured tumor positions was 1.9 mm. The corresponding deviations for using the other surrogates were 2.0 mm (RDM), 2.8 mm (SDV), and 3.0 mm (TP). To produce a motion model that accurately models the tumor position over several fractions requires at least 10 simultaneous surrogate and image acquisitions over 1–2 minutes.
Collapse
Affiliation(s)
- Kenneth A Wikström
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden.,Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf M Isacsson
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden.,Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anders Ahnesjö
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden.,Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Ippoliti M, Lukas M, Brenner W, Schatka I, Furth C, Schaeffter T, Makowski MR, Kolbitsch C. Respiratory motion correction for enhanced quantification of hepatic lesions in simultaneous PET and DCE-MR imaging. Phys Med Biol 2021; 66. [PMID: 33823503 DOI: 10.1088/1361-6560/abf51e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/06/2021] [Indexed: 11/11/2022]
Abstract
Simultaneous positron-emission tomography (PET)-magnetic resonance (MR) imaging is a hybrid technique in oncological hepatic imaging combining soft-tissue and functional contrast of dynamic contrast enhanced MR (DCE-MR) with metabolic information from PET. In this context, respiratory motion represents a major challenge by introducing blurring, artifacts and misregistration in the liver. In this work, we propose a free-breathing 3D non-rigid respiratory motion correction framework for simultaneously acquired DCE-MR and PET data, which makes use of higher spatial resolution MR data to derive motion information used directly during image reconstruction to minimize image blurring and motion artifacts. The main aim was to increase contrast of hepatic metastases to improve their detection and characterization. DCE-MR data were acquired at 3T through a golden radial phase encoding scheme, enabling derivation of motion fields. These were used in the motion compensated image reconstruction of DCE-MR time-series (48 time-points, 6 s temporal resolution, 1.5 mm isotropic spatial resolution) and 3D PET activity map, which was subsequently interpolated to the DCE-MR resolution. The extended Tofts model was fitted to DCE-MR data, obtaining functional parametric maps related to perfusion such as the endothelial permeability (Kt). Fifty-seven hepatic metastases were identified and analyzed. Quantitative evaluations of motion correction in PET images demonstrated average percentage increases of 16% ± 5% (mean ± SD) in Contrast (C), 18% ± 6% in SUVmeanand 14% ± 2% in SUVmax, while DCE-MR andKtscored contrast-to-noise-ratio increases of 64% ± 3% and 90% ± 6%, respectively. Motion-corrected data visually showed improved image contrast of hepatic metastases and effectively reduced blurring and motion artefacts. Scatter plots of SUVmeanversusKtsuggested that the proposed framework improved differentiation ofKtmeasurements. The presented motion correction framework for simultaneously acquired PET-DCE-MR data provides accurately aligned images with increased contrast of hepatic lesions allowing for improved detection and characterization.
Collapse
Affiliation(s)
- Matteo Ippoliti
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Lukas
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,Siemens Healthcare GmbH, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Technische Universität Berlin, Berlin, Germany.,King's College London, London, United Kingdom
| | - Marcus R Makowski
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Klinikum rechts der Isar der TU München, Munich, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
9
|
Rehouma H, Noumeir R, Essouri S, Jouvet P. Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7252. [PMID: 33348827 PMCID: PMC7766256 DOI: 10.3390/s20247252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
Assessment of respiratory function allows early detection of potential disorders in the respiratory system and provides useful information for medical management. There is a wide range of applications for breathing assessment, from measurement systems in a clinical environment to applications involving athletes. Many studies on pulmonary function testing systems and breath monitoring have been conducted over the past few decades, and their results have the potential to broadly impact clinical practice. However, most of these works require physical contact with the patient to produce accurate and reliable measures of the respiratory function. There is still a significant shortcoming of non-contact measuring systems in their ability to fit into the clinical environment. The purpose of this paper is to provide a review of the current advances and systems in respiratory function assessment, particularly camera-based systems. A classification of the applicable research works is presented according to their techniques and recorded/quantified respiration parameters. In addition, the current solutions are discussed with regards to their direct applicability in different settings, such as clinical or home settings, highlighting their specific strengths and limitations in the different environments.
Collapse
Affiliation(s)
- Haythem Rehouma
- École de Technologie Supérieure, Montreal, QC H3T 1C5, Canada;
| | - Rita Noumeir
- École de Technologie Supérieure, Montreal, QC H3T 1C5, Canada;
| | - Sandrine Essouri
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.E.); (P.J.)
| | - Philippe Jouvet
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.E.); (P.J.)
| |
Collapse
|
10
|
Huttinga NRF, Bruijnen T, van den Berg CAT, Sbrizzi A. Nonrigid 3D motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank MR-MOTUS. Magn Reson Med 2020; 85:2309-2326. [PMID: 33169888 PMCID: PMC7839760 DOI: 10.1002/mrm.28562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022]
Abstract
Purpose With the recent introduction of the MR‐LINAC, an MR‐scanner combined with a radiotherapy LINAC, MR‐based motion estimation has become of increasing interest to (retrospectively) characterize tumor and organs‐at‐risk motion during radiotherapy. To this extent, we introduce low‐rank MR‐MOTUS, a framework to retrospectively reconstruct time‐resolved nonrigid 3D+t motion fields from a single low‐resolution reference image and prospectively undersampled k‐space data acquired during motion. Theory Low‐rank MR‐MOTUS exploits spatiotemporal correlations in internal body motion with a low‐rank motion model, and inverts a signal model that relates motion fields directly to a reference image and k‐space data. The low‐rank model reduces the degrees‐of‐freedom, memory consumption, and reconstruction times by assuming a factorization of space‐time motion fields in spatial and temporal components. Methods Low‐rank MR‐MOTUS was employed to estimate motion in 2D/3D abdominothoracic scans and 3D head scans. Data were acquired using golden‐ratio radial readouts. Reconstructed 2D and 3D respiratory motion fields were, respectively, validated against time‐resolved and respiratory‐resolved image reconstructions, and the head motion against static image reconstructions from fully sampled data acquired right before and right after the motion. Results Results show that 2D+t respiratory motion can be estimated retrospectively at 40.8 motion fields per second, 3D+t respiratory motion at 7.6 motion fields per second and 3D+t head‐neck motion at 9.3 motion fields per second. The validations show good consistency with image reconstructions. Conclusions The proposed framework can estimate time‐resolved nonrigid 3D motion fields, which allows to characterize drifts and intra and inter‐cycle patterns in breathing motion during radiotherapy, and could form the basis for real‐time MR‐guided radiotherapy.
Collapse
Affiliation(s)
- Niek R F Huttinga
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom Bruijnen
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alessandro Sbrizzi
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Wang X, Chen H, Wan Q, Li Y, Cai N, Li X, Peng Y. Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition. Med Biol Eng Comput 2020; 58:2095-2105. [PMID: 32654016 DOI: 10.1007/s11517-020-02224-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2020] [Indexed: 12/30/2022]
Abstract
Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The image blurring could adversely affect diagnosis performance. The purpose of this study is to reduce the DWI blurring and assess its positive effect on diagnosis. The retrospective study includes 71 patients. In this paper, a motion correction and noise removal method using low-rank decomposition is proposed, which can reduce the DWI blurring by exploit the spatiotemporal continuity sequences. The deblurring performances are evaluated by qualitative and quantitative assessment, and the performance of diagnosis of lung cancer is measured by area under curve (AUC). In the view of the qualitative assessment, the deformation of the lung mass is reduced, and the blurring of the lung tumor edge is alleviated. Noise in the apparent diffusion coefficient (ADC) map is greatly reduced. For quantitative assessment, mutual information (MI) and Pearson correlation coefficient (Pearson-Coff) are 1.30 and 0.82 before the decomposition and 1.40 and 0.85 after the decomposition. Both the difference in MI and Pearson-Coff are statistically significant (p < 0.05). For the positive effect of deblurring on diagnosis of lung cancer, the AUC was improved from 0.731 to 0.841 using three-fold cross validation. We conclude that the low-rank matrix decomposition method is promising in reducing the errors in DWI lung images caused by noise and artifacts and improving diagnostics. Further investigations are warranted to understand the full utilities of the low-rank decomposition on lung DWI images. Graphical abstract.
Collapse
Affiliation(s)
- Xinhui Wang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| | - Houjin Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China.
| | - Qi Wan
- Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfeng Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| | - Naxin Cai
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| | - Xinchun Li
- Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yahui Peng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
12
|
Tran EH, Eiben B, Wetscherek A, Oelfke U, Meedt G, Hawkes DJ, McClelland JR. Evaluation of MRI-derived surrogate signals to model respiratory motion. Biomed Phys Eng Express 2020; 6:045015. [PMID: 33194224 PMCID: PMC7655234 DOI: 10.1088/2057-1976/ab944c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022]
Abstract
An MR-Linac can provide motion information of tumour and organs-at-risk before, during, and after beam delivery. However, MR imaging cannot provide real-time high-quality volumetric images which capture breath-to-breath variability of respiratory motion. Surrogate-driven motion models relate the motion of the internal anatomy to surrogate signals, thus can estimate the 3D internal motion from these signals. Internal surrogate signals based on patient anatomy can be extracted from 2D cine-MR images, which can be acquired on an MR-Linac during treatment, to build and drive motion models. In this paper we investigate different MRI-derived surrogate signals, including signals generated by applying principal component analysis to the image intensities, or control point displacements derived from deformable registration of the 2D cine-MR images. We assessed the suitability of the signals to build models that can estimate the motion of the internal anatomy, including sliding motion and breath-to-breath variability. We quantitatively evaluated the models by estimating the 2D motion in sagittal and coronal slices of 8 lung cancer patients, and comparing them to motion measurements obtained from image registration. For sagittal slices, using the first and second principal components on the control point displacements as surrogate signals resulted in the highest model accuracy, with a mean error over patients around 0.80 mm which was lower than the in-plane resolution. For coronal slices, all investigated signals except the skin signal produced mean errors over patients around 1 mm. These results demonstrate that surrogate signals derived from 2D cine-MR images, including those generated by applying principal component analysis to the image intensities or control point displacements, can accurately model the motion of the internal anatomy within a single sagittal or coronal slice. This implies the signals should also be suitable for modelling the 3D respiratory motion of the internal anatomy.
Collapse
Affiliation(s)
- Elena H Tran
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Björn Eiben
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Gustav Meedt
- Elekta, Medical Intelligence Medizintechnik GmbH, Schwabmünchen, Germany
| | - David J Hawkes
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
13
|
Gratz M, Ruhlmann V, Umutlu L, Fenchel M, Hong I, Quick HH. Impact of respiratory motion correction on lesion visibility and quantification in thoracic PET/MR imaging. PLoS One 2020; 15:e0233209. [PMID: 32497135 PMCID: PMC7272064 DOI: 10.1371/journal.pone.0233209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
The impact of a method for MR-based respiratory motion correction of PET data on lesion visibility and quantification in patients with oncologic findings in the lung was evaluated. Twenty patients with one or more lesions in the lung were included. Hybrid imaging was performed on an integrated PET/MR system using 18F-FDG as radiotracer. The standard thoracic imaging protocol was extended by a free-breathing self-gated acquisition of MR data for motion modelling. PET data was acquired simultaneously in list-mode for 5-10 mins. One experienced radiologist and one experienced nuclear medicine specialist evaluated and compared the post-processed data in consensus regarding lesion visibility (scores 1-4, 4 being best), image noise levels (scores 1-3, 3 being lowest noise), SUVmean and SUVmax. Motion-corrected (MoCo) images were additionally compared with gated images. Non-motion-corrected free-breathing data served as standard of reference in this study. Motion correction generally improved lesion visibility (3.19 ± 0.63) and noise ratings (2.95 ± 0.22) compared to uncorrected (2.81 ± 0.66 and 2.95 ± 0.22, respectively) or gated PET data (2.47 ± 0.93 and 1.30 ± 0.47, respectively). Furthermore, SUVs (mean and max) were compared for all methods to estimate their respective impact on the quantification. Deviations of SUVmax were smallest between the uncorrected and the MoCo lesion data (average increase of 9.1% of MoCo SUVs), while SUVmean agreed best for gated and MoCo reconstructions (MoCo SUVs increased by 1.2%). The studied method for MR-based respiratory motion correction of PET data combines increased lesion sharpness and improved lesion activity quantification with high signal-to-noise ratio in a clinical setting. In particular, the detection of small lesions in moving organs such as the lung and liver may thus be facilitated. These advantages justify the extension of the PET/MR imaging protocol by 5-10 minutes for motion correction.
Collapse
Affiliation(s)
- Marcel Gratz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Verena Ruhlmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | | | - Inki Hong
- Siemens Medical Solutions Inc, Knoxville, Tennessee, United States of America
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
Gallezot JD, Lu Y, Naganawa M, Carson RE. Parametric Imaging With PET and SPECT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2908633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Smith RL, Dasari P, Lindsay C, King M, Wells K. Dense motion propagation from sparse samples. Phys Med Biol 2019; 64:205023. [PMID: 31487702 DOI: 10.1088/1361-6560/ab41a0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There are many applications for which sparse, or partial sampling of dynamic image data can be used for articulating or estimating motion within the medical imaging area. In this new work, we propose a generalized framework for dense motion propagation from sparse samples which represents an example of transfer learning and manifold alignment, allowing the transfer of knowledge across imaging sources of different domains which exhibit different features. Many such examples exist in medical imaging, from mapping 2D ultrasound or fluoroscopy to 3D or 4D data or monitoring dynamic dose delivery from partial imaging data in radiotherapy. To illustrate this approach we animate, or articulate, a high resolution static MR image with 4D free breathing respiratory motion derived from low resolution sparse planar samples of motion. In this work we demonstrate that sparse sampling of dynamic MRI may be used as a viable approach to successfully build models of free- breathing respiratory motion by constrained articulation. Such models demonstrate high contrast, and high temporal and spatial resolution that have so far been hitherto unavailable with conventional imaging methods. The articulation is based on using a propagation model, in the eigen domain, to estimate complete 4D motion vector fields from sparsely sampled free-breathing dynamic MRI data. We demonstrate that this approach can provide equivalent motion vector fields compared to fully sampled 4D dynamic data, whilst preserving the corresponding high resolution/high contrast inherent in the original static volume. Validation is performed on three 4D MRI datasets using eight extracted slices from a fast 4D acquisition (0.7 s per volume). The estimated deformation fields from sparse sampling are compared to the fully sampled equivalents, resulting in an rms error of the order of 2 mm across the entire image volume. We also present exemplar 4D high contrast, high resolution articulated volunteer datasets using this methodology. This approach facilitates greater freedom in the acquisition of free breathing respiratory motion sequences which may be used to inform motion modelling methods in a range of imaging modalities and demonstrates that sparse sampling of free breathing data may be used within a manifold alignment and transfer learning paradigm to estimate fully sampled motion. The method may also be applied to other examples of sparse sampling to produce dense motion propagation.
Collapse
Affiliation(s)
- Rhodri L Smith
- Centre for Vision Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
16
|
Dietze MMA, Bastiaannet R, Kunnen B, van der Velden S, Lam MGEH, Viergever MA, de Jong HWAM. Respiratory motion compensation in interventional liver SPECT using simultaneous fluoroscopic and nuclear imaging. Med Phys 2019; 46:3496-3507. [PMID: 31183868 PMCID: PMC6851796 DOI: 10.1002/mp.13653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Quantitative accuracy of the single photon emission computed tomography (SPECT) reconstruction of the pretreatment procedure of liver radioembolization is crucial for dosimetry; visual quality is important for detecting doses deposited outside the planned treatment volume. Quantitative accuracy is limited by respiratory motion. Conventional gating eliminates motion by count rejection but increases noise, which degrades the visual reconstruction quality. Motion compensation using all counts can be performed if the motion signal and motion vector field over time are known. The measurement of the motion signal of a patient currently requires a device (such as a respiratory belt) attached to the patient, which complicates the acquisition. The motion vector field is generally extracted from a previously acquired four-dimensional scan and can differ from the motion in the scan performed during the intervention. The simultaneous acquisition of fluoroscopic and nuclear projections can be used to obtain both the motion vector field and the projections of the corresponding (moving) activity distribution. This eliminates the need for devices attached to the patient and provides an accurate motion vector field for SPECT reconstruction. Our approach to motion compensation would primarily be beneficial for interventional SPECT because the time-critical setting requires fast scans and no inconvenience of an external apparatus. The purpose of this work is to evaluate the performance of the motion compensation approach for interventional liver SPECT by means of simulations. METHODS Nuclear and fluoroscopic projections of a realistic digital human phantom with respiratory motion were generated using fast Monte Carlo simulators. Fluoroscopic projections were sampled at 1-5 Hz. Nuclear data were acquired continuously in list mode. The motion signal was extracted from the fluoroscopic projections by calculating the center-of-mass, which was then used to assign each photon to a corresponding motion bin. The fluoroscopic projections were reconstructed per bin and coregistered, resulting in a motion vector field that was used in the SPECT reconstruction. The influence of breathing patterns, fluoroscopic imaging dose, sampling rate, number of bins, and scanning time was studied. In addition, the motion compensation method was compared with conventional gating to evaluate the detectability of spheres with varying uptake ratios. RESULTS The liver motion signal was accurately extracted from the fluoroscopic projections, provided the motion was stable in amplitude and the sampling rate was greater than 2 Hz. The minimum total fluoroscopic dose for the proposed method to function in a 5-min scan was 10 µGy. Although conventional gating improved the quantitative reconstruction accuracy, substantial background noise was observed in the short scans because of the limited counts available. The proposed method similarly improved the quantitative accuracy, but generated reconstructions with higher visual quality. The proposed method provided better visualization of low-contrast features than when using gating. CONCLUSION The proposed motion compensation method has the potential to improve SPECT reconstruction quality. The method eliminates the need for external devices to measure the motion signal and generates an accurate motion vector field for reconstruction. A minimal increase in the fluoroscopic dose is required to substantially improve the results, paving the way for clinical use.
Collapse
Affiliation(s)
- Martijn M. A. Dietze
- Radiology and Nuclear MedicineUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
- Image Sciences InstituteUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
| | - Remco Bastiaannet
- Radiology and Nuclear MedicineUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
- Image Sciences InstituteUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
| | - Britt Kunnen
- Radiology and Nuclear MedicineUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
- Image Sciences InstituteUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
| | - Sandra van der Velden
- Radiology and Nuclear MedicineUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
- Image Sciences InstituteUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
| | - Marnix G. E. H. Lam
- Radiology and Nuclear MedicineUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
| | - Max A. Viergever
- Image Sciences InstituteUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
| | - Hugo W. A. M. de Jong
- Radiology and Nuclear MedicineUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
- Image Sciences InstituteUtrecht University and University Medical Center UtrechtP.O. Box 855003508 GAUtrechtthe Netherlands
| |
Collapse
|
17
|
Arif O, Afzal H, Abbas H, Amjad MF, Wan J, Nawaz R. Accelerated Dynamic MRI Using Kernel-Based Low Rank Constraint. J Med Syst 2019; 43:271. [DOI: 10.1007/s10916-019-1399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/25/2019] [Indexed: 11/24/2022]
|
18
|
Novillo F, Van Eyndhoven S, Moeyersons J, Bogaert J, Claessen G, La Gerche A, Van Huffel S, Claus P. Unsupervised respiratory signal extraction from ungated cardiac magnetic resonance imaging at rest and during exercise. Phys Med Biol 2019; 64:065001. [PMID: 30695762 DOI: 10.1088/1361-6560/ab02cd] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose and evaluate a method to estimate a respiratory signal from ungated cardiac magnetic resonance (CMR) images. Ungated CMR images were acquired in five subjects who performed exercise at different intensity levels under different physiological conditions while breathing freely. The respiratory motion was estimated by applying principal components analysis (PCA). A sign correction procedure was developed to correctly define inspiration and expiration, based on either tracking of the diaphragmatic motion or estimation of the lung volume or a combination of both. Evaluation was done using a plethysmograph signal as reference. There was a good correspondence between the plethysmograph and the estimated respiratory signals. Respiratory motion was effectively captured by one of the PCA components in 88% of the cases. Moreover, the proposed method successfully estimated the respiratory phase in 91% of the evaluated slices. The pipeline is robust, admitting a slight decline in performance with increased exercise intensity. Respiratory motion was accurately estimated by means of PCA and the application of a sign correction procedure. Our method showed promising results even for acquisitions during exercise where excessive body motion occurs. The proposed method provides a way to extract the respiratory signal from ungated CMR images, at rest as well as during exercise, in a fully unsupervised fashion, which may reduce the clinician's workload drastically.
Collapse
Affiliation(s)
- Felipe Novillo
- KU Leuven, Department of Cardiovascular Sciences, Cardiovascular Imaging and Dynamics, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Freedman JN, Collins DJ, Gurney-Champion OJ, McClelland JR, Nill S, Oelfke U, Leach MO, Wetscherek A. Super-resolution T2-weighted 4D MRI for image guided radiotherapy. Radiother Oncol 2018; 129:486-493. [PMID: 29871813 PMCID: PMC6294732 DOI: 10.1016/j.radonc.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The superior soft-tissue contrast of 4D-T2w MRI motivates its use for delineation in radiotherapy treatment planning. We address current limitations of slice-selective implementations, including thick slices and artefacts originating from data incompleteness and variable breathing. MATERIALS AND METHODS A method was developed to calculate midposition and 4D-T2w images of the whole thorax from continuously acquired axial and sagittal 2D-T2w MRI (1.5 × 1.5 × 5.0 mm3). The method employed image-derived respiratory surrogates, deformable image registration and super-resolution reconstruction. Volunteer imaging and a respiratory motion phantom were used for validation. The minimum number of dynamic acquisitions needed to calculate a representative midposition image was investigated by retrospectively subsampling the data (10-30 dynamic acquisitions). RESULTS Super-resolution 4D-T2w MRI (1.0 × 1.0 × 1.0 mm3, 8 respiratory phases) did not suffer from data incompleteness and exhibited reduced stitching artefacts compared to sorted multi-slice MRI. Experiments using a respiratory motion phantom and colour-intensity projection images demonstrated a minor underestimation of the motion range. Midposition diaphragm differences in retrospectively subsampled acquisitions were <1.1 mm compared to the full dataset. 10 dynamic acquisitions were found sufficient to generate midposition MRI. CONCLUSIONS A motion-modelling and super-resolution method was developed to calculate high quality 4D/midposition T2w MRI from orthogonal 2D-T2w MRI.
Collapse
Affiliation(s)
- Joshua N Freedman
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK; CR UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - David J Collins
- CR UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Oliver J Gurney-Champion
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Simeon Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Martin O Leach
- CR UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Ginn JS, O'Connell D, Thomas DH, Low DA, Lamb JM. Model-Interpolated Gating for Magnetic Resonance Image-Guided Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 102:885-894. [PMID: 29970314 PMCID: PMC6542358 DOI: 10.1016/j.ijrobp.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and validate a technique for radiation therapy gating using slow (≤1 frame per second) magnetic resonance imaging (MRI) and a motion model. Proposed uses of the technique include radiation therapy gating using T2-weighted images and conducting additional imaging studies during gated treatments. METHODS AND MATERIALS The technique uses a physiologically guided breathing motion model to interpolate deformed target position between 2-dimensional (2D) MRI images acquired every 1 to 3 seconds. The model is parameterized by a 1-dimensional respiratory bellows surrogate and is continuously updated with the most recently acquired 2D images. A phantom and 8 volunteers were imaged with a 0.35T MRI-guided radiation therapy system. A balanced steady-state free precession sequence with a 2D frame rate of 3 frames per second was used to evaluate the technique. The accuracy and beam-on positive predictive value (PPV) of the model-based gating decisions were evaluated using the gating decisions derived from imaging as a ground truth. A T2-weighted gating offline proof-of-concept study using a half-Fourier, single-shot, turbo-spin echo sequence is reported. RESULTS Model-interpolated gating accuracy, beam-on PPV, and median absolute distances between model and image-tracked target centroids were, on average, 98.3%, 98.4%, and 0.33 mm, respectively, in the balanced steady-state free precession phantom studies and 93.7%, 92.1%, and 0.86 mm, respectively, in the volunteer studies. T2 model-interpolated gating in 6 volunteers yielded an average accuracy and PPV of 94.3% and 92.5%, respectively, and the mean absolute median distance between modeled and imaged target centroids was 0.86 mm. CONCLUSIONS This work demonstrates the concept of model-interpolated gating for MRI-guided radiation therapy. The technique was found to be potentially sufficiently accurate for clinical use. Further development is needed to accommodate out-of-plane motion and the use of an internal MR-based respiratory surrogate.
Collapse
Affiliation(s)
- John S Ginn
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Dylan O'Connell
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David H Thomas
- Department of Radiation Oncology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado
| | - Daniel A Low
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - James M Lamb
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Karani N, Tanner C, Kozerke S, Konukoglu E. Reducing Navigators in Free-Breathing Abdominal MRI via Temporal Interpolation Using Convolutional Neural Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2333-2343. [PMID: 29994024 DOI: 10.1109/tmi.2018.2831442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Navigated 2-D multi-slice dynamic magnetic resonance imaging (MRI) acquisitions are essential for MR guided therapies. This technique yields time-resolved volumetric images during free-breathing, which are ideal for visualizing and quantifying breathing induced motion. To achieve this, navigated dynamic imaging requires acquiring multiple navigator slices. Reducing the number of navigator slices would allow for acquiring more data slices in the same time, and hence, increasing through-plane resolution or alternatively the overall acquisition time can be reduced while keeping resolution unchanged. To this end, we propose temporal interpolation of navigator slices using convolutional neural networks (CNNs). Our goal is to acquire fewer navigators and replace the missing ones with interpolation. We evaluate the proposed method on abdominal navigated dynamic MRI sequences acquired from 14 subjects. Investigations with several CNN architectures and training loss functions show favorable results for cost and a simple feed-forward network with no skip connections. When compared with interpolation by non-linear registration, the proposed method achieves higher interpolation accuracy on average as quantified in terms of root mean square error and residual motion. Analysis of the differences shows that the better performance is due to more accurate interpolation at peak exhalation and inhalation positions. Furthermore, the CNN-based approach requires substantially lower execution times than that of the registration-based method. At last, experiments on dynamic volume reconstruction reveal minimal differences between reconstructions with acquired and interpolated navigator slices.
Collapse
|
22
|
Manber R, Thielemans K, Hutton BF, Wan S, Fraioli F, Barnes A, Ourselin S, Arridge S, Atkinson D. Clinical Impact of Respiratory Motion Correction in Simultaneous PET/MR, Using a Joint PET/MR Predictive Motion Model. J Nucl Med 2018. [PMID: 29523630 PMCID: PMC6126439 DOI: 10.2967/jnumed.117.191460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In PET imaging, patient motion due to respiration can lead to artifacts and blurring, in addition to quantification errors. The integration of PET imaging with MRI in PET/MRI scanners provides spatially aligned complementary clinical information and allows the use of high-contrast, high-spatial-resolution MR images to monitor and correct motion-corrupted PET data. On a patient cohort, we tested the ability of our joint PET/MRI-based predictive motion model to correct respiratory motion in PET and show it can improve lesion detectability and quantitation and reduce image artifacts. Methods: Using multiple tracers and multiple organ locations, we applied our motion correction method to 42 clinical PET/MRI patient datasets containing 162 PET-avid lesions. Quantitative changes were calculated using SUV changes in avid lesions. Lesion detectability changes were explored with a study in which 2 radiologists identified lesions in uncorrected and motion-corrected images and provided confidence scores. Results: Mean increases of 12.4% for SUVpeak and 17.6% for SUVmax after motion correction were found. In the detectability study, confidence scores for detecting avid lesions increased, with a rise in mean score from 2.67 to 3.01 (of 4) after motion correction and a rise in detection rate from 74% to 84%. Of 162 confirmed lesions, 49 showed an increase in all 3 metrics—SUVpeak, SUVmax, and combined reader confidence score—whereas only 2 lesions showed a decrease. We also present clinical case studies demonstrating the effect that respiratory motion correction of PET data can have on patient management, with increased numbers of detected lesions, improved lesion sharpness and localization, and reduced attenuation-based artifacts. Conclusion: We demonstrated significant improvements in quantification and detection of PET-avid lesions, with specific case study examples showing where motion correction has the potential to affect diagnosis or patient care.
Collapse
Affiliation(s)
- Richard Manber
- Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Kris Thielemans
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom
| | - Brian F Hutton
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; and
| | - Simon Wan
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom
| | - Francesco Fraioli
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom
| | - Anna Barnes
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom
| | - Sébastien Ourselin
- Centre for Medical Imaging Computing, Faculty of Engineering, University College London, London, United Kingdom
| | - Simon Arridge
- Centre for Medical Imaging Computing, Faculty of Engineering, University College London, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
23
|
Kim B, Seo H, Kim D, Park H. Retrospective motion gating in cardiac MRI using a simultaneously acquired navigator. NMR IN BIOMEDICINE 2018; 31:e3874. [PMID: 29266452 DOI: 10.1002/nbm.3874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
A simultaneous acquisition technique of image and navigator signals (simultaneously acquired navigator, SIMNAV) is proposed for cardiac magnetic resonance imaging (CMRI) in Cartesian coordinates. To simultaneously acquire both image and navigator signals, a conventional balanced steady-state free precession (bSSFP) pulse sequence is modified by adding a radiofrequency (RF) pulse, which excites a supplementary slice for the navigator signal. Alternating phases of the RF pulses make it easy to separate the simultaneously acquired magnetic resonance data into image and navigator signals. The navigator signals of the proposed SIMNAV were compared with those of current gating devices and self-gating techniques for seven healthy subjects. In vivo experiments demonstrated that SIMNAV could provide cardiac cine images with sufficient image quality, similar to those from electrocardiogram (ECG) gating with breath-hold. SIMNAV can be used to acquire a cardiac cine image without requiring an ECG device and breath-hold, whilst maintaining feasible imaging time efficiency.
Collapse
Affiliation(s)
- Byungjai Kim
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| | - Hyunseok Seo
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| | - Dongchan Kim
- College of Medicine, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon, South Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
24
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:703-711. [PMID: 29533892 DOI: 10.1109/tmi.2017.2768130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, 18F-FDG and 68Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions.
Collapse
|
25
|
Fuin N, Catalano OA, Scipioni M, Canjels LPW, Izquierdo-Garcia D, Pedemonte S, Catana C. Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach. J Nucl Med 2018; 59:1474-1479. [PMID: 29371404 DOI: 10.2967/jnumed.117.203943] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 01/23/2023] Open
Abstract
We present an approach for concurrent reconstruction of respiratory motion-compensated abdominal dynamic contrast-enhanced (DCE)-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields derived from radial MR data; the approach is robust to changes in respiratory pattern and does not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncologic patients were simultaneously acquired for 6 min on an integrated PET/MR system after administration of 18F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases on the basis of a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. Motion vector fields obtained using the full 6-min (MC6-min) and only the last 1 min (MC1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MR images (moco_GRASP). The motion-correction methods (MC6-min and MC1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of SUVmax and SUVmean, contrast, signal-to-noise ratio (SNR), and lesion volume in the PET images. Results: Motion-corrected MC6-min PET images demonstrated 30%, 23%, 34%, and 18% increases in average SUVmax, SUVmean, contrast, and SNR and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC1-min protocol: 19%, 10%, 15%, and 9% increases in average SUVmax, SUVmean, contrast, and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath-hold Cartesian volumetric interpolated breath-hold examination acquisitions. Conclusion: We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared with routine PET/DCE-MRI protocols.
Collapse
Affiliation(s)
- Niccolo Fuin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Michele Scipioni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.,Department of Information Engineering, University of Pisa, Pisa, Italy; and
| | - Lisanne P W Canjels
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Stefano Pedemonte
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
26
|
Cabello J, Ziegler SI. Advances in PET/MR instrumentation and image reconstruction. Br J Radiol 2018; 91:20160363. [PMID: 27376170 PMCID: PMC5966194 DOI: 10.1259/bjr.20160363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The combination of positron emission tomography (PET) and MRI has attracted the attention of researchers in the past approximately 20 years in small-animal imaging and more recently in clinical research. The combination of PET/MRI allows researchers to explore clinical and research questions in a wide number of fields, some of which are briefly mentioned here. An important number of groups have developed different concepts to tackle the problems that PET instrumentation poses to the exposition of electromagnetic fields. We have described most of these research developments in preclinical and clinical experiments, including the few commercial scanners available. From the software perspective, an important number of algorithms have been developed to address the attenuation correction issue and to exploit the possibility that MRI provides for motion correction and quantitative image reconstruction, especially parametric modelling of radiopharmaceutical kinetics. In this work, we give an overview of some exemplar applications of simultaneous PET/MRI, together with technological hardware and software developments.
Collapse
Affiliation(s)
- Jorge Cabello
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sibylle I Ziegler
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
27
|
Harris W, Yin FF, Wang C, Zhang Y, Cai J, Ren L. Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study. Phys Med Biol 2017; 63:01NT01. [PMID: 29087963 PMCID: PMC5756137 DOI: 10.1088/1361-6560/aa9746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. METHODS 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. RESULTS For XCAT, VPD/COMS were 11.93 ± 2.37%/0.90 ± 0.27 mm and 11.53 ± 1.47%/0.85 ± 0.20 mm among all scenarios with Cartesian sampling (SP = 10%) and radial sampling (21 spokes, SP = 5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR = 20. For patient data, the tumor tracking errors in superior-inferior, anterior-posterior and lateral (LAT) directions were 0.46 ± 0.20 mm, 0.56 ± 0.17 mm and 0.23 ± 0.16 mm, respectively, for Cartesian-based sampling with SP = 20% and 0.60 ± 0.19 mm, 0.56 ± 0.22 mm and 0.42 ± 0.15 mm, respectively, for radial-based sampling with SP = 8% (32 spokes). CONCLUSIONS It is feasible to estimate VC-MRI from a single undersampled on-board 2D cine MRI. Phantom and patient studies showed that the temporal resolution of VC-MRI can potentially be improved by 5-10 times using a 2D cine image acquired with 10-20% k-space sampling.
Collapse
Affiliation(s)
- Wendy Harris
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, USA
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
- Medical Physics Graduate Program, Duke Kunshan University, 8 Duke Avenue, Kunshan, Jiangsu, 215316, China
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, USA
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| | - You Zhang
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| | - Jing Cai
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, USA
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| | - Lei Ren
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, USA
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, USA
| |
Collapse
|
28
|
Abstract
Simultaneous PET-MR imaging improves deficiencies in PET images. The primary areas in which magnetic resonance (MR) has been applied to guide PET results are in correction for patient motion and in improving the effects of PET resolution and partial volume averaging. MR-guided motion correction of PET has been applied to respiratory, cardiac, and gross body movements and shown to improve lesion detectability and contrast. Partial volume correction or resolution improvement of PET governed by MR imaging anatomic information improves visualization of structures and quantitative accuracy. Evaluation in clinical applications is needed to determine their true impacts.
Collapse
Affiliation(s)
- David S Lalush
- Joint Department of Biomedical Engineering, The University of North Carolina, Campus Box 7575, 152 MacNider Hall, Chapel Hill, NC 27599-7575, USA; Joint Department of Biomedical Engineering, North Carolina State University, Campus Box 7115, 911 Oval Drive, Raleigh, NC 27695-7115, USA.
| |
Collapse
|
29
|
Gillman A, Smith J, Thomas P, Rose S, Dowson N. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections. Med Phys 2017; 44:e430-e445. [DOI: 10.1002/mp.12577] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/23/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ashley Gillman
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
- Faculty of Medicine; University of Queensland; Brisbane Australia
| | - Jye Smith
- Department of Radiation Oncology; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Paul Thomas
- Faculty of Medicine; University of Queensland; Brisbane Australia
- Herston Imaging Research Facility and Specialised PET Services Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Stephen Rose
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| | - Nicholas Dowson
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| |
Collapse
|
30
|
Freedman JN, Collins DJ, Bainbridge H, Rank CM, Nill S, Kachelrieß M, Oelfke U, Leach MO, Wetscherek A. T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance-Guided Radiotherapy Treatment Planning. Invest Radiol 2017; 52:563-573. [PMID: 28459800 PMCID: PMC5581953 DOI: 10.1097/rli.0000000000000381] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. MATERIALS AND METHODS Ten patients with primary non-small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. RESULTS High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all respiratory phases and patients), between corresponding respiratory phases of 4D-T1w and 4D-T2w MRI and the tie-phase of 4D-T1w and 3-dimensional T2w MRI, were consistent to 0.41% ± 0.37%. Four-dimensional T2w MRI displayed tumor extent, structure, and position more clearly than corresponding 4D-T1w MRI, especially when mobile tumor sites were adjacent to organs at risk. CONCLUSIONS A methodology to obtain 4D-T2w MRI that retrospectively applies the motion information from 4D-T1w MRI to 3-dimensional T2w MRI was developed and verified. Four-dimensional T2w MRI can assist clinicians in delineating mobile lesions that are difficult to define on 4D-T1w MRI, because of poor tumor-tissue contrast.
Collapse
Affiliation(s)
- Joshua N. Freedman
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David J. Collins
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Bainbridge
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher M. Rank
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simeon Nill
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Kachelrieß
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Oelfke
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin O. Leach
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Wetscherek
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Chen D, Xie H, Zhang S, Gu L. Lung respiration motion modeling: a sparse motion field presentation method using biplane x-ray images. ACTA ACUST UNITED AC 2017; 62:7855-7873. [DOI: 10.1088/1361-6560/aa8841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Küstner T, Schwartz M, Martirosian P, Gatidis S, Seith F, Gilliam C, Blu T, Fayad H, Visvikis D, Schick F, Yang B, Schmidt H, Schwenzer NF. MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal 2017; 42:129-144. [PMID: 28800546 DOI: 10.1016/j.media.2017.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE To develop a motion correction for Positron-Emission-Tomography (PET) using simultaneously acquired magnetic-resonance (MR) images within 90 s. METHODS A 90 s MR acquisition allows the generation of a cardiac and respiratory motion model of the body trunk. Thereafter, further diagnostic MR sequences can be recorded during the PET examination without any limitation. To provide full PET scan time coverage, a sensor fusion approach maps external motion signals (respiratory belt, ECG-derived respiration signal) to a complete surrogate signal on which the retrospective data binning is performed. A joint Compressed Sensing reconstruction and motion estimation of the subsampled data provides motion-resolved MR images (respiratory + cardiac). A 1-POINT DIXON method is applied to these MR images to derive a motion-resolved attenuation map. The motion model and the attenuation map are fed to the Customizable and Advanced Software for Tomographic Reconstruction (CASToR) PET reconstruction system in which the motion correction is incorporated. All reconstruction steps are performed online on the scanner via Gadgetron to provide a clinically feasible setup for improved general applicability. The method was evaluated on 36 patients with suspected liver or lung metastasis in terms of lesion quantification (SUVmax, SNR, contrast), delineation (FWHM, slope steepness) and diagnostic confidence level (3-point Likert-scale). RESULTS A motion correction could be conducted for all patients, however, only in 30 patients moving lesions could be observed. For the examined 134 malignant lesions, an average improvement in lesion quantification of 22%, delineation of 64% and diagnostic confidence level of 23% was achieved. CONCLUSION The proposed method provides a clinically feasible setup for respiratory and cardiac motion correction of PET data by simultaneous short-term MRI. The acquisition sequence and all reconstruction steps are publicly available to foster multi-center studies and various motion correction scenarios.
Collapse
Affiliation(s)
- Thomas Küstner
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany; Department of Radiology, University of Tübingen, Tübingen, Germany.
| | - Martin Schwartz
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany; Section on Experimental Radiology, University of Tübingen, Germany
| | | | - Sergios Gatidis
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Ferdinand Seith
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Christopher Gilliam
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong
| | - Thierry Blu
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong
| | - Hadi Fayad
- INSERM U1101, LaTIM, University of Bretagne, Brest, France
| | | | - F Schick
- Section on Experimental Radiology, University of Tübingen, Germany
| | - B Yang
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany
| | - H Schmidt
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - N F Schwenzer
- Department of Radiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Wilms M, Werner R, Yamamoto T, Handels H, Ehrhardt J. Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations. ACTA ACUST UNITED AC 2017; 62:5823-5839. [DOI: 10.1088/1361-6560/aa70cc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Andreychenko A, Denis de Senneville B, Navest RJM, Tijssen RHN, Lagendijk JJW, van den Berg CAT. Respiratory motion model based on the noise covariance matrix of a receive array. Magn Reson Med 2017; 79:1730-1735. [PMID: 28593709 DOI: 10.1002/mrm.26775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 11/12/2022]
Abstract
PURPOSE Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. METHODS A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool. RESULTS The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM. CONCLUSIONS The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- A Andreychenko
- Center for Image Sciences, University Medical Center Utrecht, the Netherlands
| | - B Denis de Senneville
- Center for Image Sciences, University Medical Center Utrecht, the Netherlands.,IMB, UMR 5251 CNRS/University of Bordeaux, Bordeaux, France
| | - R J M Navest
- Center for Image Sciences, University Medical Center Utrecht, the Netherlands
| | - R H N Tijssen
- Center for Image Sciences, University Medical Center Utrecht, the Netherlands
| | - J J W Lagendijk
- Center for Image Sciences, University Medical Center Utrecht, the Netherlands
| | - C A T van den Berg
- Center for Image Sciences, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
35
|
Munoz C, Neji R, Cruz G, Mallia A, Jeljeli S, Reader AJ, Botnar RM, Prieto C. Motion-corrected simultaneous cardiac positron emission tomography and coronary MR angiography with high acquisition efficiency. Magn Reson Med 2017; 79:339-350. [PMID: 28426162 PMCID: PMC5763353 DOI: 10.1002/mrm.26690] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/12/2022]
Abstract
Purpose Develop a framework for efficient free‐breathing simultaneous whole‐heart coronary magnetic resonance angiography (CMRA) and cardiac positron emission tomography (PET) on a 3 Tesla PET‐MR system. Methods An acquisition that enables nonrigid motion correction of both CMRA and PET has been developed. The proposed method estimates translational motion from low‐resolution 2D MR image navigators acquired at each heartbeat and 3D nonrigid respiratory motion between different respiratory bins from the CMRA data itself. Estimated motion is used for correcting the CMRA as well as the emission and attenuation PET data sets to the same respiratory position. The CMRA approach was studied in 10 healthy subjects and compared for both left and right coronary arteries (LCA, RCA) against a reference scan with diaphragmatic navigator gating and tracking. The PET‐CMRA approach was tested in 5 oncology patients with 18F‐FDG myocardial uptake. PET images were compared against uncorrected and gated PET reconstructions. Results For the healthy subjects, no statistically significant differences in vessel length and sharpness (P > 0.01) were observed between the proposed approach and the reference acquisition with navigator gating and tracking, although data acquisition was significantly shorter. The proposed approach improved CMRA vessel sharpness by 37.9% and 49.1% (LCA, RCA) and vessel length by 48.0% and 36.7% (LCA, RCA) in comparison with no motion correction for all the subjects. Motion‐corrected PET images showed improved sharpness of the myocardium compared to uncorrected reconstructions and reduced noise compared to gated reconstructions. Conclusion Feasibility of a new respiratory motion‐compensated simultaneous cardiac PET‐CMRA acquisition has been demonstrated. Magn Reson Med 79:339–350, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Camila Munoz
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare, Frimley, United Kingdom
| | - Gastão Cruz
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Andrew Mallia
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,PET Centre, St Thomas' Hospital, King's College London & Guys and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Sami Jeljeli
- PET Centre, St Thomas' Hospital, King's College London & Guys and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Andrew J Reader
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Rene M Botnar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Claudia Prieto
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
36
|
Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T. Technical and instrumentational foundations of PET/MRI. Eur J Radiol 2017; 94:A3-A13. [PMID: 28431784 DOI: 10.1016/j.ejrad.2017.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
This paper highlights the origins of combined positron emission tomography (PET) and magnetic resonance imaging (MRI) whole-body systems that were first introduced for applications in humans in 2010. This text first covers basic aspects of each imaging modality before describing the technical and methodological challenges of combining PET and MRI within a single system. After several years of development, combined and even fully-integrated PET/MRI systems have become available and made their way into the clinic. This multi-modality imaging system lends itself to the advanced exploration of diseases to support personalized medicine in a long run. To that extent, this paper provides an introduction to PET/MRI methodology and important technical solutions.
Collapse
Affiliation(s)
- Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.
| | - Harald H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany; Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Jacobo Cal-Gonzalez
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, Academisch Ziekenhuis Groningen, Groningen, The Netherlands
| | - Thomas Beyer
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
37
|
Chen X, Usman M, Baumgartner CF, Balfour DR, Marsden PK, Reader AJ, Prieto C, King AP. High-Resolution Self-Gated Dynamic Abdominal MRI Using Manifold Alignment. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:960-971. [PMID: 28113339 DOI: 10.1109/tmi.2016.2636449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel retrospective self-gating method based on manifold alignment (MA), which enables reconstruction of free breathing, high spatial, and temporal resolution abdominal magnetic resonance imaging sequences. Based on a radial golden-angle acquisition trajectory, our method enables a multidimensional self-gating signal to be extracted from the k -space data for more accurate motion representation. The k -space radial profiles are evenly divided into a number of overlapping groups based on their radial angles. MA is then used to simultaneously learn and align the low dimensional manifolds of all groups, and embed them into a common manifold. In the manifold, k -space profiles that represent similar respiratory positions are close to each other. Image reconstruction is performed by combining radial profiles with evenly distributed angles that are close in the manifold. Our method was evaluated on both 2-D and 3-D synthetic and in vivo data sets. On the synthetic data sets, our method achieved high correlation with the ground truth in terms of image intensity and virtual navigator values. Using the in vivo data, compared with a state-of-the-art approach based on the center of k -space gating, our method was able to make use of much richer profile data for self-gating, resulting in statistically significantly better quantitative measurements in terms of organ sharpness and image gradient entropy.
Collapse
|
38
|
Rank CM, Heußer T, Wetscherek A, Freitag MT, Sedlaczek O, Schlemmer HP, Kachelrieß M. Respiratory motion compensation for simultaneous PET/MR based on highly undersampled MR data. Med Phys 2017; 43:6234. [PMID: 27908174 DOI: 10.1118/1.4966128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Positron emission tomography (PET) of the thorax region is impaired by respiratory patient motion. To account for motion, the authors propose a new method for PET/magnetic resonance (MR) respiratory motion compensation (MoCo), which uses highly undersampled MR data with acquisition times as short as 1 min/bed. METHODS The proposed PET/MR MoCo method (4D jMoCo PET) uses radial MR data to estimate the respiratory patient motion employing MR joint motion estimation and image reconstruction with temporal median filtering. Resulting motion vector fields are incorporated into the system matrix of the PET reconstruction. The proposed approach is evaluated for the thorax region utilizing a PET/MR simulation with 1 min MR acquisition time and simultaneous PET/MR measurements of six patients with MR acquisition times of 1 and 5 min and radial undersampling factors of 11.2 and 2.2, respectively. Reconstruction results are compared to 3D PET, 4D gated PET and a standard MoCo method (4D sMoCo PET), which performs iterative image reconstruction and motion estimation sequentially. Quantitative analysis comprises the parameters SUVmean, SUVmax, full width at half-maximum/lesion volume, contrast and signal-to-noise ratio. RESULTS For simulated PET data, our quantitative analysis shows that the proposed 4D jMoCo PET approach with temporal filtering achieves the best quantification accuracy of all tested reconstruction methods with a mean absolute deviation of 2.3% when compared to the ground truth. For measured PET patient data, the mean absolute deviation of 4D jMoCo PET using a 1 min MR acquisition for motion estimation is 2.1% relative to the 5 min MR acquisition. This demonstrates a robust behavior even in case of strong undersampling at MR acquisition times as short as 1 min. In contrast, 4D sMoCo PET shows considerable reduction of quantification accuracy for the 1 min MR acquisition time. Relative to 3D PET, the proposed 4D jMoCo PET approach with temporal filtering yields an average increase of SUVmean, SUVmax, and contrast of 29.9% and 13.8% for simulated and measured PET data, respectively. CONCLUSIONS Employing artifact-robust motion estimation enables PET/MR respiratory MoCo with MR acquisition times as short as 1 min/bed improving PET image quality and quantification accuracy.
Collapse
Affiliation(s)
- Christopher M Rank
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thorsten Heußer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andreas Wetscherek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| | - Martin T Freitag
- Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Oliver Sedlaczek
- Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Hess M, Buther F, Schafers KP. Data-Driven Methods for the Determination of Anterior-Posterior Motion in PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:422-432. [PMID: 27662672 DOI: 10.1109/tmi.2016.2611022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Physiological motion combined with elongated scanning times in PET leads to image degradation and quantification errors. Correction approaches usually require 1-D signals that can be obtained with hardware-based or data-driven methods. Most of the latter are optimized or limited to capture internal motion along the superior-inferior (S-I) direction. In this work we present methods for also extracting anterior-posterior (A-P) motion from PET data and propose a set of novel weighting mechanisms that can be used to emphasize certain lines-of-response (LORs) for an increased sensitivity and better signal-to-noise ratio (SNR). The proper functioning of the methods was verified in a phantom experiment. Further, their application to clinical [18F]-FDG-PET data of 72 patients revealed that using the weighting mechanisms leads to signals with significantly higher spectral respiratory weights, i.e. signals with higher quality. Information about multi-dimensional motion is contained in PET data and can be derived with data-driven methods. Motion models or correction techniques such as respiratory gating might benefit from the proposed methods as they allow to describe the three-dimensional movements of PET-positive structures more precisely.
Collapse
|
40
|
Fayad H, Schmidt H, Küstner T, Visvikis D. 4-Dimensional MRI and Attenuation Map Generation in PET/MRI with 4-Dimensional PET-Derived Deformation Matrices: Study of Feasibility for Lung Cancer Applications. J Nucl Med 2016; 58:833-839. [PMID: 27738008 DOI: 10.2967/jnumed.116.178947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023] Open
Abstract
Respiratory motion may reduce accuracy in the fusion of functional and anatomic images from combined PET/MRI systems. Methodologies for the correction of respiratory motion in PET acquisitions with such systems are mostly based on the use of respiration-synchronized MRI acquisitions to derive motion fields. Existing approaches based on tagging acquisitions may introduce artifacts in MR images, whereas motion model approaches require the acquisition of training datasets. The objective of this work was to investigate the possibility of generating 4-dimensional (4D) MR images and associated attenuation maps (AMs) from the combination of a single static MR image and motion fields obtained from simultaneously acquired 4D non-attenuation-corrected (NAC) PET images. Methods: Four-dimensional PET/MRI datasets were acquired for 11 patients on a simultaneous PET/MRI system. The 4D PET datasets were retrospectively binned into 4 motion amplitude frames corresponding to the simultaneously acquired T1-weighted 4D MR images. A T1-weighted 3-dimensional MRI sequence with Dixon-based fat and water separation was also acquired at the end of expiration for PET attenuation correction purposes. All reconstructed 4D NAC PET images were then elastically registered to the single end-of-expiration NAC PET image. The derived motion fields were subsequently applied to the end-of-expiration frame of the acquired 4D MRI volume and the AM derived from the Dixon MR image to generate respiration-synchronized MR images and corresponding AMs. Results: The accuracy of the proposed method was assessed by comparing the generated and acquired images according to metrics such as overall correlation coefficients and differences in distances of anatomic landmarks on the generated and acquired MRI datasets. High correlation coefficients (mean ± SD: 0.93 ± 0.03) and small differences (2.69 ± 0.5 mm) were obtained. Moreover, small tissue classification differences (2.23% ± 0.68%) between generated and 4D MRI-extracted AMs were observed. Conclusion: Our results confirm the feasibility of using 4D NAC PET images for accurate PET attenuation correction and respiratory motion correction in PET/MRI, without the need for patient-specific 4D MRI acquisitions.
Collapse
Affiliation(s)
- Hadi Fayad
- LaTIM, INSERM UMR1101, CHRU Morvan, Université de Bretagne Occidentale, Brest, France
| | - Holger Schmidt
- Department of Radiology, University of Tübingen, Tübingen, Germany; and
| | - Thomas Küstner
- Department of Radiology, University of Tübingen, Tübingen, Germany; and.,University of Stuttgart, Stuttgart, Germany
| | - Dimitris Visvikis
- LaTIM, INSERM UMR1101, CHRU Morvan, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
41
|
Manber R, Thielemans K, Hutton BF, Wan S, McClelland J, Barnes A, Arridge S, Ourselin S, Atkinson D. Joint PET-MR respiratory motion models for clinical PET motion correction. Phys Med Biol 2016; 61:6515-30. [DOI: 10.1088/0031-9155/61/17/6515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Stemkens B, Tijssen RHN, de Senneville BD, Lagendijk JJW, van den Berg CAT. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy. Phys Med Biol 2016; 61:5335-55. [DOI: 10.1088/0031-9155/61/14/5335] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Baumgartner CF, Kolbitsch C, McClelland JR, Rueckert D, King AP. Autoadaptive motion modelling for MR-based respiratory motion estimation. Med Image Anal 2016; 35:83-100. [PMID: 27343436 DOI: 10.1016/j.media.2016.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 04/22/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
Respiratory motion poses significant challenges in image-guided interventions. In emerging treatments such as MR-guided HIFU or MR-guided radiotherapy, it may cause significant misalignments between interventional road maps obtained pre-procedure and the anatomy during the treatment, and may affect intra-procedural imaging such as MR-thermometry. Patient specific respiratory motion models provide a solution to this problem. They establish a correspondence between the patient motion and simpler surrogate data which can be acquired easily during the treatment. Patient motion can then be estimated during the treatment by acquiring only the simpler surrogate data. In the majority of classical motion modelling approaches once the correspondence between the surrogate data and the patient motion is established it cannot be changed unless the model is recalibrated. However, breathing patterns are known to significantly change in the time frame of MR-guided interventions. Thus, the classical motion modelling approach may yield inaccurate motion estimations when the relation between the motion and the surrogate data changes over the duration of the treatment and frequent recalibration may not be feasible. We propose a novel methodology for motion modelling which has the ability to automatically adapt to new breathing patterns. This is achieved by choosing the surrogate data in such a way that it can be used to estimate the current motion in 3D as well as to update the motion model. In particular, in this work, we use 2D MR slices from different slice positions to build as well as to apply the motion model. We implemented such an autoadaptive motion model by extending our previous work on manifold alignment. We demonstrate a proof-of-principle of the proposed technique on cardiac gated data of the thorax and evaluate its adaptive behaviour on realistic synthetic data containing two breathing types generated from 6 volunteers, and real data from 4 volunteers. On synthetic data the autoadaptive motion model yielded 21.45% more accurate motion estimations compared to a non-adaptive motion model 10 min after a change in breathing pattern. On real data we demonstrated the method's ability to maintain motion estimation accuracy despite a drift in the respiratory baseline. Due to the cardiac gating of the imaging data, the method is currently limited to one update per heart beat and the calibration requires approximately 12 min of scanning. Furthermore, the method has a prediction latency of 800 ms. These limitations may be overcome in future work by altering the acquisition protocol.
Collapse
Affiliation(s)
| | - Christoph Kolbitsch
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jamie R McClelland
- Centre for Medical Image Computing, University College London, London, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| | - Andrew P King
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
44
|
Miao S, Wang ZJ, Pan L, Butler J, Moran G, Liao R. Scatter to volume registration for model-free respiratory motion estimation from dynamic MRIs. Comput Med Imaging Graph 2016; 52:72-81. [PMID: 27180910 DOI: 10.1016/j.compmedimag.2016.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Respiratory motion is one major complicating factor in many image acquisition applications and image-guided interventions. Existing respiratory motion estimation and compensation methods typically rely on breathing motion models learned from certain training data, and therefore may not be able to effectively handle intra-subject and/or inter-subject variations of respiratory motion. In this paper, we propose a respiratory motion compensation framework that directly recovers motion fields from sparsely spaced and efficiently acquired dynamic 2-D MRIs without using a learned respiratory motion model. We present a scatter-to-volume deformable registration algorithm to register dynamic 2-D MRIs with a static 3-D MRI to recover dense deformation fields. Practical considerations and approximations are provided to solve the scatter-to-volume registration problem efficiently. The performance of the proposed method was investigated on both synthetic and real MRI datasets, and the results showed significant improvements over the state-of-art respiratory motion modeling methods. We also demonstrated a potential application of the proposed method on MRI-based motion corrected PET imaging using hybrid PET/MRI.
Collapse
Affiliation(s)
- S Miao
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Medical Imaging Technology, Siemens Healthcare, Princeton, NJ 08540, USA.
| | - Z J Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - L Pan
- Siemens Healthcare, Baltimore, MD 21205, USA
| | - J Butler
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - G Moran
- Siemens Canada, Oakville, ON L6H 0H6, Canada
| | - R Liao
- Medical Imaging Technology, Siemens Healthcare, Princeton, NJ 08540, USA
| |
Collapse
|
45
|
In vivo validation of spatio-temporal liver motion prediction from motion tracked on MR thermometry images. Int J Comput Assist Radiol Surg 2016; 11:1143-52. [PMID: 27072839 DOI: 10.1007/s11548-016-1405-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Magnetic resonance-guided focused ultrasound (MRgFUS) of the liver during free-breathing requires spatio-temporal prediction of the liver motion from partial motion observations. The study purpose is to evaluate the prediction accuracy for a realistic MRgFUS therapy scenario, namely for human in vivo data, tracking based on MR images routinely acquired during MRgFUS and in vivo deformations caused by the FUS probe. METHODS In vivo validation of the motion model was based on a 3D breath-hold image and an interleaved acquisition of two MR slices. Prediction accuracy was determined with respect to manually annotated landmarks. A statistical population liver motion model was used for predicting the liver motion for not tracked regions. This model was individualized by mapping it to end-exhale 3D breath-hold images. Spatial correspondence between tracking and model positions was established by affine 3D-to-2D image registration. For spatio-temporal prediction, MR tracking results were temporally extrapolated. RESULTS Performance was evaluated for 10 volunteers, of which 5 had a dummy FUS probe put on their abdomen. MR tracking had a mean (95 %) accuracy of 1.1 (2.4) mm. The motion of the liver on the evaluation MR slice was spatio-temporally predicted with an accuracy of 1.9 (4.4) mm for a latency of 216 ms. A simple translation model performed similarly (2.1 (4.8) mm) as the two MR slices were relatively close (mean 38 mm). Temporal prediction was important (10 % error reduction), while registration effects could only partially be assessed and showed no benefits. On average, motion magnitude, motion amplitude and breathing frequency increased by 24, 16 and 8 %, respectively, for the cases with FUS probe placement. This motion increase could be reduced by the spatio-temporal prediction. CONCLUSION The study shows that tracking liver vessels on MR images, which are also used for MR thermometry, is a viable approach.
Collapse
|
46
|
Richard MA, Fouquet JP, Lebel R, Lepage M. MRI-Guided Derivation of the Input Function for PET Kinetic Modeling. PET Clin 2016; 11:193-202. [DOI: 10.1016/j.cpet.2015.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Munoz C, Kolbitsch C, Reader AJ, Marsden P, Schaeffter T, Prieto C. MR-Based Cardiac and Respiratory Motion-Compensation Techniques for PET-MR Imaging. PET Clin 2016; 11:179-91. [DOI: 10.1016/j.cpet.2015.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Dutta J, Huang C, Li Q, El Fakhri G. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR. Med Phys 2016; 42:4227-40. [PMID: 26133621 DOI: 10.1118/1.4921616] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. METHODS The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. RESULTS The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%-107% for 14 mm diameter lung lesions and 39%-120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors' results show that the MC image yields 19%-190% increase in the CNR of high-intensity features of interest affected by respiratory motion relative to UG and a 6%-51% increase relative to OG. CONCLUSIONS Standalone MR is not the traditional choice for lung scans due to the low proton density, high magnetic susceptibility, and low T2 (∗) relaxation time in the lungs. By developing and validating this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique in its capability of combining structural information from MR with functional information from PET, shows promise in pulmonary imaging.
Collapse
Affiliation(s)
- Joyita Dutta
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Chuan Huang
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; and Departments of Radiology and Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794
| | - Quanzheng Li
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
49
|
Abstract
Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA.
| |
Collapse
|
50
|
Abstract
Multimodal imaging has led to a more detailed exploration of different physiologic processes with integrated PET/MR imaging being the most recent entry. Although the clinical need is still questioned, it is well recognized that it represents one of the most active and promising fields of medical imaging research in terms of software and hardware. The hardware developments have moved from small detector components to high-performance PET inserts and new concepts in full systems. Conversely, the software focuses on the efficient performance of necessary corrections without the use of CT data. The most recent developments in both directions are reviewed.
Collapse
Affiliation(s)
- Charalampos Tsoumpas
- Division of Biomedical Imaging, Faculty of Medicine and Health, University of Leeds, 8.001a, Worsley Building, Clarendon Way, Leeds LS2 9JT, UK
| | - Dimitris Visvikis
- LaTIM UMR 1101, INSERM, University of Brest, Bat 1, 1er etage, 5 avenue Foch, Brest 29609, France
| | - George Loudos
- Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spiridonos 28, Egaleo, Athens 12210, Greece.
| |
Collapse
|