1
|
Yang X, Yu P, Sun H, Deng M, Liu A, Li C, Meng W, Xu W, Xie B, Geng J, Ren Y, Zhang R, Liu M, Dai H. Assessment of lung deformation in patients with idiopathic pulmonary fibrosis with elastic registration technique on pulmonary three-dimensional ultrashort echo time MRI. Insights Imaging 2024; 15:17. [PMID: 38253739 PMCID: PMC10803694 DOI: 10.1186/s13244-023-01555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/28/2023] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE To assess lung deformation in patients with idiopathic pulmonary fibrosis (IPF) using with elastic registration algorithm applied to three-dimensional ultrashort echo time (3D-UTE) MRI and analyze relationship of lung deformation with the severity of IPF. METHODS Seventy-six patients with IPF (mean age: 62 ± 6 years) and 62 age- and gender-matched healthy controls (mean age: 58 ± 4 years) were prospectively enrolled. End-inspiration and end-expiration images acquired with a single breath-hold 3D-UTE sequence were registered using elastic registration algorithm. Jacobian determinants were calculated from deformation fields and represented on color maps. Jac-mean (absolute value of the log means of Jacobian determinants) and the Dice similarity coefficient (Dice) were compared between different groups. RESULTS Compared with healthy controls, the Jac-mean of IPF patients significantly decreased (0.21 ± 0.08 vs. 0.27 ± 0. 07, p < 0.001). Furthermore, the Jac-mean and Dice correlated with the metrics of pulmonary function tests and the composite physiological index. The lung deformation in IPF patients with dyspnea Medical Research Council (MRC) ≥ 3 (Jac-mean: 0.16 ± 0.03; Dice: 0.06 ± 0.02) was significantly lower than MRC1 (Jac-mean: 0. 25 ± 0.03, p < 0.001; Dice: 0.10 ± 0.01, p < 0.001) and MRC 2 (Jac-mean: 0.22 ± 0.11, p = 0.001; Dice: 0.08 ± 0.03, p = 0.006). Meanwhile, Jac-mean and Dice correlated with health-related quality of life, 6 min-walk distance, and the extent of pulmonary fibrosis. Jac-mean correlated with pulmonary vascular-related indexes on high-resolution CT. CONCLUSION The decreased lung deformation in IPF patients correlated with the clinical severity of IPF patients. Elastic registration of inspiratory-to-expiratory 3D UTE MRI may be a new morphological and functional marker for non-radiation and noninvasive evaluation of IPF. CRITICAL RELEVANCE STATEMENT This prospective study demonstrated that lung deformation decreased in idiopathic pulmonary fibrosis (IPF) patients and correlated with the severity of IPF. Elastic registration of inspiratory-to-expiratory three-dimensional ultrashort echo time (3D UTE) MRI may be a new morphological and functional marker for non-radiation and noninvasive evaluation of IPF. KEY POINTS • Elastic registration of inspiratory-to-expiratory three-dimensional ultrashort echo time (3D UTE) MRI could evaluate lung deformation. • Lung deformation significantly decreased in idiopathic pulmonary fibrosis (IPF) patients, compared with the healthy controls. • Reduced lung deformation of IPF patients correlated with worsened pulmonary function and the composite physiological index (CPI).
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Pengxin Yu
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, 100025, China
| | - Haishuang Sun
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Mei Deng
- Department of Radiology, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Anqi Liu
- Department of Radiology, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Chen Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Wenyan Meng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Wenxiu Xu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Bingbing Xie
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Jing Geng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Yanhong Ren
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Rongguo Zhang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, 100025, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China.
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China.
| |
Collapse
|
2
|
Nelson CR, Ekberg J, Fridell K. Prostate Cancer Detection in Screening Using Magnetic Resonance Imaging and Artificial Intelligence. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1874061802006010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Prostate cancer is a leading cause of death among men who do not participate in a screening programme. MRI forms a possible alternative for prostate analysis of a higher level of sensitivity than the PSA test or biopsy. Magnetic resonance is a non-invasive method and magnetic resonance tomography produces a large amount of data. If a screening programme were implemented, a dramatic increase in radiologist workload and patient waiting time will follow. Computer Aided-Diagnose (CAD) could assist radiologists to decrease reading times and cost, and increase diagnostic effectiveness. CAD mimics radiologist and imaging guidelines to detect prostate cancer.
Aim:
The purpose of this study was to analyse and describe current research in MRI prostate examination with the aid of CAD. The aim was to determine if CAD systems form a reliable method for use in prostate screening.
Methods:
This study was conducted as a systematic literature review of current scientific articles. Selection of articles was carried out using the “Preferred Reporting Items for Systematic Reviews and for Meta-Analysis” (PRISMA). Summaries were created from reviewed articles and were then categorised into relevant data for results.
Results:
CAD has shown that its capability concerning sensitivity or specificity is higher than a radiologist. A CAD system can reach a peak sensitivity of 100% and two CAD systems showed a specificity of 100%. CAD systems are highly specialised and chiefly focus on the peripheral zone, which could mean missing cancer in the transition zone. CAD systems can segment the prostate with the same effectiveness as a radiologist.
Conclusion:
When CAD analysed clinically-significant tumours with a Gleason score greater than 6, CAD outperformed radiologists. However, their focus on the peripheral zone would require the use of more than one CAD system to analyse the entire prostate.
Collapse
|
3
|
Knull E, Oto A, Eggener S, Tessier D, Guneyli S, Chatterjee A, Fenster A. Evaluation of tumor coverage after MR-guided prostate focal laser ablation therapy. Med Phys 2018; 46:800-810. [PMID: 30447155 DOI: 10.1002/mp.13292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Prostate cancer is the most common noncutaneous cancer among men in the USA. Focal laser thermal ablation (FLA) has the potential to control small tumors while preserving urinary and erectile function by leaving the neurovascular bundles and urethral sphincters intact. Accurate needle guidance is critical to the success of FLA. Multiparametric magnetic resonance images (mpMRI) can be used to identify targets, guide needles, and assess treatment outcomes. In this study, we evaluated the location of ablation zones relative to targeted lesions in 23 patients who underwent FLA therapy in a phase II trial. The ablation zone margins and unablated tumor volume were measured to determine whether complete coverage of each tumor was achieved, which would be considered a clinically successful ablation. METHODS Preoperative mpMRI was acquired for each patient 2-3 months preceding the procedure and the prostate and lesion(s) were manually contoured on 3 T T2-weighted axial images. The prostate and ablation zone(s) were also manually contoured on postablation 1.5 T T1-weighted contrast-enhanced axial images acquired immediately after the procedure intraoperatively. The lesion surface was nonrigidly registered to the postablation image using an initial affine registration followed by nonrigid thin-plate spline registration of the prostate surfaces. The margins between the registered lesion and ablation zone were calculated using a uniform spherical distribution of rays, and the volume of intersection was also calculated. Each prostate was contoured five times to determine the segmentation variability and its effect on intersection of the lesion and ablation zone. RESULTS Our study showed that the boundaries of the segmented tumor and ablation zone were close. Of the 23 lesions that were analyzed, 11 were completely covered by the ablation zone and 12 were partially covered. A shift of 1.0, 2.0, and 2.6 mm would result in 19, 21, and all tumors completely covered by the ablation zone, respectively. The median unablated tumor volume across all tumors was 0.1 mm 3 with an IQR of 3.7 mm 3 , which was 0.2% of the median tumor volume (46.5 mm 3 with an IQR of 46.3 mm 3 ). The median extension of the tumors beyond the ablation zone, in cases which were partially ablated, was 0.9 mm (IQR of 1.3 mm), with the furthest tumor extending 2.6 mm. CONCLUSION In all cases, the boundary of the tumor was close to the boundary of the ablation zone, and in some cases, the boundary of the ablation zone did not completely enclose the tumor. Our results suggest that some of the ablations were not clinically successful and that there is a need for more accurate needle tracking and guidance methods. Limitations of the study include errors in the registration and segmentation methods used as well as different voxel sizes and contrast between the registered T2 and T1 MRI sequences and asymmetric swelling of the prostate postprocedurally.
Collapse
Affiliation(s)
- Eric Knull
- Department of Biomedical Engineering, Western University, London, ON, N6A 3K7, Canada.,Robarts Research Institute, Western University, London, ON, N6A 5B7, Canada
| | - Aytekin Oto
- University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Scott Eggener
- University of Chicago Medicine, Chicago, IL, 60637, USA
| | - David Tessier
- Robarts Research Institute, Western University, London, ON, N6A 5B7, Canada
| | - Serkan Guneyli
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | | | - Aaron Fenster
- Robarts Research Institute, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
4
|
Accurate validation of ultrasound imaging of prostate cancer: a review of challenges in registration of imaging and histopathology. J Ultrasound 2018; 21:197-207. [PMID: 30062440 PMCID: PMC6113189 DOI: 10.1007/s40477-018-0311-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/11/2018] [Indexed: 01/20/2023] Open
Abstract
As the development of modalities for prostate cancer (PCa) imaging advances, the challenge of accurate registration between images and histopathologic ground truth becomes more pressing. Localization of PCa, rather than detection, requires a pixel-to-pixel validation of imaging based on histopathology after radical prostatectomy. Such a registration procedure is challenging for ultrasound modalities; not only the deformations of the prostate after resection have to be taken into account, but also the deformation due to the employed transrectal probe and the mismatch in orientation between imaging planes and pathology slices. In this work, we review the latest techniques to facilitate accurate validation of PCa localization in ultrasound imaging studies and extrapolate a general strategy for implementation of a registration procedure.
Collapse
|
5
|
Hale GR, Czarniecki M, Cheng A, Bloom JB, Seifabadi R, Gold SA, Rayn KN, Sabarwal VK, Mehralivand S, Choyke PL, Turkbey B, Wood B, Pinto PA. Comparison of Elastic and Rigid Registration during Magnetic Resonance Imaging/Ultrasound Fusion-Guided Prostate Biopsy: A Multi-Operator Phantom Study. J Urol 2018; 200:1114-1121. [PMID: 29940248 DOI: 10.1016/j.juro.2018.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The relative value of rigid or elastic registration during magnetic resonance imaging/ultrasound fusion guided prostate biopsy has been poorly studied. We compared registration errors (the distance between a region of interest and fiducial markers) between rigid and elastic registration during fusion guided prostate biopsy using a prostate phantom model. MATERIALS AND METHODS Four gold fiducial markers visible on magnetic resonance imaging and ultrasound were placed throughout 1 phantom prostate model. The phantom underwent magnetic resonance imaging and the fiducial markers were labeled as regions of interest. An experienced user and a novice user of fusion guided prostate biopsy targeted regions of interest and then the corresponding fiducial markers on ultrasound after rigid and then elastic registration. Registration errors were compared. RESULTS A total of 224 registration error measurements were recorded. Overall elastic registration did not provide significantly improved registration error over rigid registration (mean ± SD 4.87 ± 3.50 vs 4.11 ± 2.09 mm, p = 0.05). However, lesions near the edge of the phantom showed increased registration errors when using elastic registration (5.70 ± 3.43 vs 3.23 ± 1.68 mm, p = 0.03). Compared to the novice user the experienced user reported decreased registration error with rigid registration (3.25 ± 1.49 vs 4.98 ± 2.10 mm, p <0.01) and elastic registration (3.94 ± 2.61 vs 6.07 ± 4.16 mm, p <0.01). CONCLUSIONS We found no difference in registration errors between rigid and elastic registration overall but rigid registration decreased the registration error of targets near the prostate edge. Additionally, operator experience reduced registration errors regardless of the registration method. Therefore, elastic registration algorithms cannot serve as a replacement for attention to detail during the registration process and anatomical landmarks indicating accurate registration when beginning the procedure and before targeting each region of interest.
Collapse
Affiliation(s)
- Graham R Hale
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcin Czarniecki
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alexis Cheng
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jonathan B Bloom
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Reza Seifabadi
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Samuel A Gold
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kareem N Rayn
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vikram K Sabarwal
- Department of Urology, George Washington University, Washington, D. C
| | - Sherif Mehralivand
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Germany
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Brad Wood
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Orczyk C, Rosenkrantz AB, Mikheev A, Villers A, Bernaudin M, Taneja SS, Valable S, Rusinek H. 3D Registration of mpMRI for Assessment of Prostate Cancer Focal Therapy. Acad Radiol 2017; 24:1544-1555. [PMID: 29122471 PMCID: PMC6025844 DOI: 10.1016/j.acra.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/25/2017] [Accepted: 06/09/2017] [Indexed: 01/16/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to assess a novel method of three-dimensional (3D) co-registration of prostate magnetic resonance imaging (MRI) examinations performed before and after prostate cancer focal therapy. MATERIALS AND METHODS We developed a software platform for automatic 3D deformable co-registration of prostate MRI at different time points and applied this method to 10 patients who underwent focal ablative therapy. MRI examinations were performed preoperatively, as well as 1 week and 6 months post treatment. Rigid registration served as reference for assessing co-registration accuracy and precision. RESULTS Segmentation of preoperative and postoperative prostate revealed a significant postoperative volume decrease of the gland that averaged 6.49 cc (P = .017). Applying deformable transformation based on mutual information from 120 pairs of MRI slices, we refined by 2.9 mm (max. 6.25 mm) the alignment of the ablation zone, segmented from contrast-enhanced images on the 1-week postoperative examination, to the 6-month postoperative T2-weighted images. This represented a 500% improvement over the rigid approach (P = .001), corrected by volume. The dissimilarity by Dice index of the mapped ablation zone using deformable transformation vs rigid control was significantly (P = .04) higher at the ablation site than in the whole gland. CONCLUSIONS Our findings illustrate our method's ability to correct for deformation at the ablation site. The preliminary analysis suggests that deformable transformation computed from mutual information of preoperative and follow-up MRI is accurate in co-registration of MRI examinations performed before and after focal therapy. The ability to localize the previously ablated tissue in 3D space may improve targeting for image-guided follow-up biopsy within focal therapy protocols.
Collapse
Affiliation(s)
- Clément Orczyk
- The Prostate Unit, Department of Urology, University College London Hospitals, London, United Kingdom; Division of Urologic Oncology, Department of Urology, New York University Langone Medical Center, New York, NY; Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000Caen, France; Department of Urology, University Hospital of Caen, Caen, France.
| | - Andrew B Rosenkrantz
- Department of Radiology, New York University Langone Medical Center, New York, NY
| | - Artem Mikheev
- Department of Radiology, New York University Langone Medical Center, New York, NY
| | - Arnauld Villers
- Department of Urology, Université Lille Nord de France, Lille, France
| | - Myriam Bernaudin
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000Caen, France
| | - Samir S Taneja
- Division of Urologic Oncology, Department of Urology, New York University Langone Medical Center, New York, NY; Department of Radiology, New York University Langone Medical Center, New York, NY
| | - Samuel Valable
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000Caen, France
| | - Henry Rusinek
- Department of Radiology, New York University Langone Medical Center, New York, NY
| |
Collapse
|
7
|
Moldovan P, Udrescu C, Ravier E, Souchon R, Rabilloud M, Bratan F, Sanzalone T, Cros F, Crouzet S, Gelet A, Chapet O, Rouvière O. Accuracy of Elastic Fusion of Prostate Magnetic Resonance and Transrectal Ultrasound Images under Routine Conditions: A Prospective Multi-Operator Study. PLoS One 2016; 11:e0169120. [PMID: 28033423 PMCID: PMC5199076 DOI: 10.1371/journal.pone.0169120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Purpose To evaluate in unselected patients imaged under routine conditions the co-registration accuracy of elastic fusion between magnetic resonance (MR) and ultrasound (US) images obtained by the Koelis Urostation™. Materials and Methods We prospectively included 15 consecutive patients referred for placement of intraprostatic fiducials before radiotherapy and who gave written informed consent by signing the Institutional Review Board-approved forms. Three fiducials were placed in the prostate under US guidance in standardized positions (right apex, left mid-gland, right base) using the Koelis Urostation™. Patients then underwent prostate MR imaging. Four operators outlined the prostate on MR and US images and an elastic fusion was retrospectively performed. Fiducials were used to measure the overall target registration error (TRE3D), the error along the antero-posterior (TREAP), right-left (TRERL) and head-feet (TREHF) directions, and within the plane orthogonal to the virtual biopsy track (TRE2D). Results Median TRE3D and TRE2D were 3.8–5.6 mm, and 2.5–3.6 mm, respectively. TRE3D was significantly influenced by the operator (p = 0.013), fiducial location (p = 0.001) and 3D axis orientation (p<0.0001). The worst results were obtained by the least experienced operator. TRE3D was smaller in mid-gland and base than in apex (average difference: -1.21 mm (95% confidence interval (95%CI): -2.03; -0.4) and -1.56 mm (95%CI: -2.44; -0.69) respectively). TREAP and TREHF were larger than TRERL (average difference: +1.29 mm (95%CI: +0.87; +1.71) and +0.59 mm (95%CI: +0.1; +0.95) respectively). Conclusions Registration error values were reasonable for clinical practice. The co-registration accuracy was significantly influenced by the operator’s experience, and significantly poorer in the antero-posterior direction and at the apex.
Collapse
Affiliation(s)
- Paul Moldovan
- Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Hôpital Edouard Herriot, Lyon, France
| | - Corina Udrescu
- Hospices Civils de Lyon, Department of Radiation Oncology, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Emmanuel Ravier
- Hospices Civils de Lyon, Department of Urology, Hôpital Edouard Herriot, Lyon, France
| | | | - Muriel Rabilloud
- Hospices Civils de Lyon, Service de Biostatistique et Bioinformatique, Lyon, France
- Université de Lyon, Lyon, France
- CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France
| | - Flavie Bratan
- Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Hôpital Edouard Herriot, Lyon, France
| | - Thomas Sanzalone
- Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Hôpital Edouard Herriot, Lyon, France
| | - Fanny Cros
- Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Hôpital Edouard Herriot, Lyon, France
| | - Sébastien Crouzet
- Hospices Civils de Lyon, Department of Urology, Hôpital Edouard Herriot, Lyon, France
- Inserm, U1032, LabTau, Lyon, France
- Université de Lyon, Lyon, France
| | - Albert Gelet
- Hospices Civils de Lyon, Department of Urology, Hôpital Edouard Herriot, Lyon, France
- Inserm, U1032, LabTau, Lyon, France
- Université de Lyon, Lyon, France
| | - Olivier Chapet
- Hospices Civils de Lyon, Department of Radiation Oncology, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Olivier Rouvière
- Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Hôpital Edouard Herriot, Lyon, France
- Inserm, U1032, LabTau, Lyon, France
- Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|