1
|
He P, Shi Z, Cui Y, Wang R, Wu D. A spatiotemporal graph transformer approach for Alzheimer's disease diagnosis with rs-fMRI. Comput Biol Med 2024; 178:108762. [PMID: 38908359 DOI: 10.1016/j.compbiomed.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease accompanied by cognitive impairment. Early diagnosis is crucial for the timely treatment and intervention of AD. Resting-state functional magnetic resonance imaging (rs-fMRI) records the temporal dynamics and spatial dependency in the brain, which have been utilized for automatically diagnosis of AD in the community. Existing approaches of AD diagnosis using rs-fMRI only assess functional connectivity, ignoring the spatiotemporal dependency mining of rs-fMRI. In addition, it is difficult to increase diagnosis accuracy due to the shortage of rs-fMRI sample and the poor anti-noise ability of model. To deal with these problems, this paper proposes a novel approach for the automatic diagnosis of AD, namely spatiotemporal graph transformer network (STGTN). The proposed STGTN can effectively extract spatiotemporal features of rs-fMRI. Furthermore, to solve the sample-limited problem and to improve the anti-noise ability of the proposed model, an adversarial training strategy is adopted for the proposed STGTN to generate adversarial examples (AEs) and augment training samples with AEs. Experimental results indicate that the proposed model achieves the classification accuracy of 92.58%, and 85.27% with the adversarial training strategy for AD vs. normal control (NC), early mild cognitive impairment (eMCI) vs. late mild cognitive impairment (lMCI) respectively, outperforming the state-of-the-art methods. Besides, the spatial attention coefficients reflected from the designed model reveal the importance of brain connections under different classification tasks.
Collapse
Affiliation(s)
- Peng He
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China.
| | - Zhan Shi
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Yaping Cui
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Ruyan Wang
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Dapeng Wu
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| |
Collapse
|
2
|
Etekochay MO, Amaravadhi AR, González GV, Atanasov AG, Matin M, Mofatteh M, Steinbusch HW, Tesfaye T, Praticò D. Unveiling New Strategies Facilitating the Implementation of Artificial Intelligence in Neuroimaging for the Early Detection of Alzheimer's Disease. J Alzheimers Dis 2024; 99:1-20. [PMID: 38640152 DOI: 10.3233/jad-231135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a global impact. The past few decades have witnessed significant strides in comprehending the underlying pathophysiological mechanisms and developing diagnostic methodologies for AD, such as neuroimaging approaches. Neuroimaging techniques, including positron emission tomography and magnetic resonance imaging, have revolutionized the field by providing valuable insights into the structural and functional alterations in the brains of individuals with AD. These imaging modalities enable the detection of early biomarkers such as amyloid-β plaques and tau protein tangles, facilitating early and precise diagnosis. Furthermore, the emerging technologies encompassing blood-based biomarkers and neurochemical profiling exhibit promising results in the identification of specific molecular signatures for AD. The integration of machine learning algorithms and artificial intelligence has enhanced the predictive capacity of these diagnostic tools when analyzing complex datasets. In this review article, we will highlight not only some of the most used diagnostic imaging approaches in neurodegeneration research but focus much more on new tools like artificial intelligence, emphasizing their application in the realm of AD. These advancements hold immense potential for early detection and intervention, thereby paving the way for personalized therapeutic strategies and ultimately augmenting the quality of life for individuals affected by AD.
Collapse
Affiliation(s)
| | - Amoolya Rao Amaravadhi
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Jeedimetla, Hyderabad, India
| | - Gabriel Villarrubia González
- Expert Systems and Applications Laboratory (ESALAB), Faculty of Science, University of Salamanca, Salamanca, Spain
| | - Atanas G Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Maima Matin
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Mohammad Mofatteh
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Harry Wilhelm Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Netherlands
| | - Tadele Tesfaye
- CareHealth Medical Practice, Jimma Road, Addis Ababa, Ethiopia
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Liang W, Zhang K, Cao P, Liu X, Yang J, Zaiane OR. Exploiting task relationships for Alzheimer's disease cognitive score prediction via multi-task learning. Comput Biol Med 2023; 152:106367. [PMID: 36516575 DOI: 10.1016/j.compbiomed.2022.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is highly prevalent and a significant cause of dementia and death in elderly individuals. Motivated by breakthroughs of multi-task learning (MTL), efforts have been made to extend MTL to improve the Alzheimer's disease cognitive score prediction by exploiting structure correlation. Though important and well-studied, three key aspects are yet to be fully handled in an unified framework: (i) appropriately modeling the inherent task relationship; (ii) fully exploiting the task relatedness by considering the underlying feature structure. (iii) automatically determining the weight of each task. To this end, we present the Bi-Graph guided self-Paced Multi-Task Feature Learning (BGP-MTFL) framework for exploring the relationship among multiple tasks to improve overall learning performance of cognitive score prediction. The framework consists of the two correlation regularization for features and tasks, ℓ2,1 regularization and self-paced learning scheme. Moreover, we design an efficient optimization method to solve the non-smooth objective function of our approach based on the Alternating Direction Method of Multipliers (ADMM) combined with accelerated proximal gradient (APG). The proposed model is comprehensively evaluated on the Alzheimer's disease neuroimaging initiative (ADNI) datasets. Overall, the proposed algorithm achieves an nMSE (normalized Mean Squared Error) of 3.923 and an wR (weighted R-value) of 0.416 for predicting eighteen cognitive scores, respectively. The empirical study demonstrates that the proposed BGP-MTFL model outperforms the state-of-the-art AD prediction approaches and enables identifying more stable biomarkers.
Collapse
Affiliation(s)
- Wei Liang
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Kai Zhang
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Peng Cao
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.
| | - Xiaoli Liu
- DAMO Academy, Alibaba Group, Hangzhou, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China
| | - Osmar R Zaiane
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Zhang Y, Liu T, Lanfranchi V, Yang P. Explainable Tensor Multi-Task Ensemble Learning Based on Brain Structure Variation for Alzheimer's Disease Dynamic Prediction. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 11:1-12. [PMID: 36478772 PMCID: PMC9721355 DOI: 10.1109/jtehm.2022.3219775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Machine learning approaches for predicting Alzheimer's disease (AD) progression can substantially assist researchers and clinicians in developing effective AD preventive and treatment strategies. This study proposes a novel machine learning algorithm to predict the AD progression utilising a multi-task ensemble learning approach. Specifically, we present a novel tensor multi-task learning (MTL) algorithm based on similarity measurement of spatio-temporal variability of brain biomarkers to model AD progression. In this model, the prediction of each patient sample in the tensor is set as one task, where all tasks share a set of latent factors obtained through tensor decomposition. Furthermore, as subjects have continuous records of brain biomarker testing, the model is extended to ensemble the subjects' temporally continuous prediction results utilising a gradient boosting kernel to find more accurate predictions. We have conducted extensive experiments utilising data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to evaluate the performance of the proposed algorithm and model. Results demonstrate that the proposed model have superior accuracy and stability in predicting AD progression compared to benchmarks and state-of-the-art multi-task regression methods in terms of the Mini Mental State Examination (MMSE) questionnaire and The Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) cognitive scores. Brain biomarker correlation information can be utilised to identify variations in individual brain structures and the model can be utilised to effectively predict the progression of AD with magnetic resonance imaging (MRI) data and cognitive scores of AD patients at different stages.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Computer ScienceThe University of Sheffield Sheffield S10 2TN U.K
| | - Tong Liu
- Department of Computer ScienceThe University of Sheffield Sheffield S10 2TN U.K
| | | | - Po Yang
- Department of Computer ScienceThe University of Sheffield Sheffield S10 2TN U.K
| |
Collapse
|
6
|
Pan Y, Liu M, Xia Y, Shen D. Disease-Image-Specific Learning for Diagnosis-Oriented Neuroimage Synthesis With Incomplete Multi-Modality Data. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:6839-6853. [PMID: 34156939 PMCID: PMC9297233 DOI: 10.1109/tpami.2021.3091214] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Incomplete data problem is commonly existing in classification tasks with multi-source data, particularly the disease diagnosis with multi-modality neuroimages, to track which, some methods have been proposed to utilize all available subjects by imputing missing neuroimages. However, these methods usually treat image synthesis and disease diagnosis as two standalone tasks, thus ignoring the specificity conveyed in different modalities, i.e., different modalities may highlight different disease-relevant regions in the brain. To this end, we propose a disease-image-specific deep learning (DSDL) framework for joint neuroimage synthesis and disease diagnosis using incomplete multi-modality neuroimages. Specifically, with each whole-brain scan as input, we first design a Disease-image-Specific Network (DSNet) with a spatial cosine module to implicitly model the disease-image specificity. We then develop a Feature-consistency Generative Adversarial Network (FGAN) to impute missing neuroimages, where feature maps (generated by DSNet) of a synthetic image and its respective real image are encouraged to be consistent while preserving the disease-image-specific information. Since our FGAN is correlated with DSNet, missing neuroimages can be synthesized in a diagnosis-oriented manner. Experimental results on three datasets suggest that our method can not only generate reasonable neuroimages, but also achieve state-of-the-art performance in both tasks of Alzheimer's disease identification and mild cognitive impairment conversion prediction.
Collapse
|
7
|
Xu L, Wu H, He C, Wang J, Zhang C, Nie F, Chen L. Multi-modal sequence learning for Alzheimer’s disease progression prediction with incomplete variable-length longitudinal data. Med Image Anal 2022; 82:102643. [DOI: 10.1016/j.media.2022.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
|
8
|
Zhang Y, Zhou M, Liu T, Lanfranchi V, Yang P. Spatio-temporal Tensor Multi-Task Learning for Predicting Alzheimer's Disease in a Longitudinal study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:979-985. [PMID: 36086566 DOI: 10.1109/embc48229.2022.9870882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The utilisation of machine learning techniques to predict Alzheimer's Disease (AD) progression will substantially assist researchers and clinicians in establishing effective AD prevention and treatment strategies. In this research, we present a novel Multi-Task Learning (MTL) model for modelling AD progression based on tensor formation from spatio-temporal similarity measures of brain biomarkers. In this model, each patient sample's prediction in the tensor is assigned to a task, with each task sharing a set of latent factors acquired via tensor decomposition. To further improve the performance of the model, we present a novel regularisation term which utilises the convex combination of disease progression to modify longitudinal stability and ensure that two regression models have a minimal variation at successive time points. The model can be utilised to effectively predict AD progression with magnetic resonance imaging (MRI) data and cognitive scores of AD patients at various stages. We conducted extensive experiments to evaluate the performance for the proposed model and algorithm utilising data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Compared to single-task and state-of-the-art multi-task regression techniques, our proposed method has greater accuracy and stability for predicting AD progress in terms of root mean square error, with an average reduction of 2.60 compared to single-task regression methods and 1.17 compared to multi-task regression methods in the Mini-Mental State Examination (MMSE) questionnaire; with an average reduction of 5.08 compared to single-task regression methods and 2.71 compared to multi-task regression methods in the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog).
Collapse
|
9
|
The Road to Personalized Medicine in Alzheimer’s Disease: The Use of Artificial Intelligence. Biomedicines 2022; 10:biomedicines10020315. [PMID: 35203524 PMCID: PMC8869403 DOI: 10.3390/biomedicines10020315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dementia remains an extremely prevalent syndrome among older people and represents a major cause of disability and dependency. Alzheimer’s disease (AD) accounts for the majority of dementia cases and stands as the most common neurodegenerative disease. Since age is the major risk factor for AD, the increase in lifespan not only represents a rise in the prevalence but also adds complexity to the diagnosis. Moreover, the lack of disease-modifying therapies highlights another constraint. A shift from a curative to a preventive approach is imminent and we are moving towards the application of personalized medicine where we can shape the best clinical intervention for an individual patient at a given point. This new step in medicine requires the most recent tools and analysis of enormous amounts of data where the application of artificial intelligence (AI) plays a critical role on the depiction of disease–patient dynamics, crucial in reaching early/optimal diagnosis, monitoring and intervention. Predictive models and algorithms are the key elements in this innovative field. In this review, we present an overview of relevant topics regarding the application of AI in AD, detailing the algorithms and their applications in the fields of drug discovery, and biomarkers.
Collapse
|
10
|
Tang S, Cao P, Huang M, Liu X, Zaiane O. Dual feature correlation guided multi-task learning for Alzheimer's disease prediction. Comput Biol Med 2022; 140:105090. [PMID: 34875406 DOI: 10.1016/j.compbiomed.2021.105090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease affecting cognition functions. Predicting the cognitive scores from neuroimage measures and identifying relevant imaging biomarkers are important research topics in the study of AD. Despite machine learning algorithms having many successful applications, the prediction model suffers from the so-called curse of dimensionality. Multi-task feature learning (MTFL) has helped tackle this problem incorporating the correlations among multiple clinical cognitive scores. However, MTFL neglects the inherent correlation among brain imaging measures. In order to better predict the cognitive scores and identify stable biomarkers, we first propose a generalized multi-task formulation framework that incorporates the task and feature correlation structures simultaneously. Second, we present a novel feature-aware sparsity-inducing norm (FAS-norm) penalty to incorporate a useful correlation between brain regions by exploiting correlations among features. Three multi-task learning models that incorporate the FAS-norm penalty are proposed following our framework. Finally, the algorithm based on the alternating direction method of multipliers (ADMM) is developed to optimize the non-smooth problems. We comprehensively evaluate the proposed models on the cross-sectional and longitudinal Alzheimer's disease neuroimaging initiative datasets. The inputs are the thickness measures and the volume measures of the cortical regions of interest. Compared with MTFL, our methods achieve an average decrease of 4.28% in overall error in the cross-sectional analysis and an average decrease of 7.97% in the Alzheimer's Disease Assessment Scale cognitive total score longitudinal analysis. Moreover, our methods identify sensitive and stable biomarkers to physicians, such as the hippocampus, lateral ventricle, and corpus callosum.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Peng Cao
- College of Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Min Huang
- College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Xiaoli Liu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Osmar Zaiane
- Department of Computing Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Multi-view prediction of Alzheimer's disease progression with end-to-end integrated framework. J Biomed Inform 2021; 125:103978. [PMID: 34922021 DOI: 10.1016/j.jbi.2021.103978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease is a common neurodegenerative brain disease that affects the elderly population worldwide. Its early automatic detection is vital for early intervention and treatment. A common solution is to perform future cognitive score prediction based on the baseline brain structural magnetic resonance image (MRI), which can directly infer the potential severity of disease. Recently, several studies have modelled disease progression by predicting the future brain MRI that can provide visual information of brain changes over time. Nevertheless, no studies explore the intra correlation of these two solutions, and it is unknown whether the predicted MRI can assist the prediction of cognitive score. Here, instead of independent prediction, we aim to predict disease progression in multi-view, i.e., predicting subject-specific changes of cognitive score and MRI volume concurrently. To achieve this, we propose an end-to-end integrated framework, where a regression model and a generative adversarial network are integrated together and then jointly optimized. Three integration strategies are exploited to unify these two models. Moreover, considering that some brain regions, such as hippocampus and middle temporal gyrus, could change significantly during the disease progression, a region-of-interest (ROI) mask and a ROI loss are introduced into the integrated framework to leverage this anatomical prior knowledge. Experimental results on the longitudinal Alzheimer's Disease Neuroimaging Initiative dataset demonstrated that the integrated framework outperformed the independent regression model for cognitive score prediction. And its performance can be further improved with the ROI loss for both cognitive score and MRI prediction.
Collapse
|
12
|
Rethinking modeling Alzheimer's disease progression from a multi-task learning perspective with deep recurrent neural network. Comput Biol Med 2021; 138:104935. [PMID: 34656869 DOI: 10.1016/j.compbiomed.2021.104935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder that usually starts slowly and progressively worsens. Predicting the progression of Alzheimer's disease with longitudinal analysis on the time series data has recently received increasing attention. However, training an accurate progression model for brain network faces two major challenges: missing features, and the small sample size during the follow-up study. According to our analysis on the AD progression task, we thoroughly analyze the correlation among the multiple predictive tasks of AD progression at multiple time points. Thus, we propose a multi-task learning framework that can adaptively impute missing values and predict future progression over time from a subject's historical measurements. Progression is measured in terms of MRI volumetric measurements, trajectories of a cognitive score and clinical status. To this end, we propose a new perspective of predicting the AD progression with a multi-task learning paradigm. In our multi-task learning paradigm, we hypothesize that the inherent correlations exist among: (i). the prediction tasks of clinical diagnosis, cognition and ventricular volume at each time point; (ii). the tasks of imputation and prediction; and (iii). the prediction tasks at multiple future time points. According to our findings of the task correlation, we develop an end-to-end deep multi-task learning method to jointly improve the performance of assigning missing value and prediction. We design a balanced multi-task dynamic weight optimization. With in-depth analysis and empirical evidence on Alzheimer's Disease Neuroimaging Initiative (ADNI), we show the benefits and flexibility of the proposed multi-task learning model, especially for the prediction at the M60 time point. The proposed approach achieves 5.6%, 5.7%, 4.0% and 11.8% improvement with respect to mAUC, BCA and MAE (ADAS-Cog13 and Ventricles), respectively.
Collapse
|
13
|
Diagnosis of obsessive-compulsive disorder via spatial similarity-aware learning and fused deep polynomial network. Med Image Anal 2021; 75:102244. [PMID: 34700244 DOI: 10.1016/j.media.2021.102244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/22/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a type of hereditary mental illness, which seriously affect the normal life of the patients. Sparse learning has been widely used in detecting brain diseases objectively by removing redundant information and retaining monitor valuable biological characteristics from the brain functional connectivity network (BFCN). However, most existing methods ignore the relationship between brain regions in each subject. To solve this problem, this paper proposes a spatial similarity-aware learning (SSL) model to build BFCNs. Specifically, we embrace the spatial relationship between adjacent or bilaterally symmetric brain regions via a smoothing regularization term in the model. We develop a novel fused deep polynomial network (FDPN) model to further learn the powerful information and attempt to solve the problem of curse of dimensionality using BFCN features. In the FDPN model, we stack a multi-layer deep polynomial network (DPN) and integrate the features from multiple output layers via the weighting mechanism. In this way, the FDPN method not only can identify the high-level informative features of BFCN but also can solve the problem of curse of dimensionality. A novel framework is proposed to detect OCD and unaffected first-degree relatives (UFDRs), which combines deep learning and traditional machine learning methods. We validate our algorithm in the resting-state functional magnetic resonance imaging (rs-fMRI) dataset collected by the local hospital and achieve promising performance.
Collapse
|
14
|
Lu L, Elbeleidy S, Baker LZ, Wang H, Nie F. Predicting Cognitive Declines Using Longitudinally Enriched Representations for Imaging Biomarkers. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:891-904. [PMID: 33253116 DOI: 10.1109/tmi.2020.3041227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A critical challenge in using longitudinal neuroimaging data to study the progressions of Alzheimer's Disease (AD) is the varied number of missing records of the patients during the course when AD develops. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation with fixed length for imaging biomarkers, which aims to simultaneously capture the information conveyed by both baseline neuroimaging record and progressive variations characterized by varied counts of available follow-up records over time. Because the learned biomarker representations are a set of fixed-length vectors, they can be readily used by traditional machine learning models to study AD developments. Take into account that the missing brain scans are not aligned in terms of time in a studied cohort, we develop a new objective that maximizes the ratio of the summations of a number of l1 -norm distances for improved robustness, which, though, is difficult to efficiently solve in general. Thus, we derive a new efficient and non-greedy iterative solution algorithm and rigorously prove its convergence. We have performed extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. A clear performance gain has been achieved in predicting ten different cognitive scores when we compare the original baseline biomarker representations against the learned representations with longitudinal enrichments. We further observe that the top selected biomarkers by our new method are in accordance with known knowledge in AD studies. These promising results have demonstrated improved performances of our new method that validate its effectiveness.
Collapse
|
15
|
续 宝, 丁 冲, 徐 桂. [Research on the application of convolution neural network in the diagnosis of Alzheimer's disease]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:169-177. [PMID: 33899442 PMCID: PMC10307567 DOI: 10.7507/1001-5515.202007019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/24/2020] [Indexed: 11/03/2022]
Abstract
With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer's disease, and discusses the existing problems and gives the possible development directions in order to provide some references.
Collapse
Affiliation(s)
- 宝红 续
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 冲 丁
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 桂芝 徐
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P.R.China
| |
Collapse
|
16
|
Katzourou I, Leonenko G, Ivanov D, Meggy A, Marshall R, Sims R, Williams J, Holmans P, Escott-Price V. Cognitive Decline in Alzheimer's Disease Is Not Associated with APOE. J Alzheimers Dis 2021; 84:141-149. [PMID: 34487047 DOI: 10.3233/jad-210685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The rate of cognitive decline in Alzheimer's disease (AD) has been found to vary widely between individuals, with numerous factors driving this heterogeneity. OBJECTIVE This study aimed to compute a measure of cognitive decline in patients with AD based on clinical information and to utilize this measure to explore the genetic architecture of cognitive decline in AD. METHODS An in-house cohort of 616 individuals, hereby termed the Cardiff Genetic Resource for AD, as well as a subset of 577 individuals from the publicly available ADNI dataset, that have been assessed at multiple timepoints, were used in this study. Measures of cognitive decline were computed using various mixed effect linear models of Mini-Mental State Examination (MMSE). After an optimal model was selected, a metric of cognitive decline for each individual was estimated as the random slope derived from this model. This metric was subsequently used for testing the association of cognitive decline with apolipoprotein E (APOE) genotype. RESULTS No association was found between the number of APOEɛ2 or ɛ4 alleles and the rate of cognitive decline in either of the datasets examined. CONCLUSION Further exploration is required to uncover possible genetic variants that affect the rate of decline in patients with AD.
Collapse
Affiliation(s)
| | - Ganna Leonenko
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Dobril Ivanov
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Alun Meggy
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Rachel Marshall
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Julie Williams
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
17
|
Zhang L, Wang M, Liu M, Zhang D. A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis. Front Neurosci 2020; 14:779. [PMID: 33117114 PMCID: PMC7578242 DOI: 10.3389/fnins.2020.00779] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Deep learning has recently been used for the analysis of neuroimages, such as structural magnetic resonance imaging (MRI), functional MRI, and positron emission tomography (PET), and it has achieved significant performance improvements over traditional machine learning in computer-aided diagnosis of brain disorders. This paper reviews the applications of deep learning methods for neuroimaging-based brain disorder analysis. We first provide a comprehensive overview of deep learning techniques and popular network architectures by introducing various types of deep neural networks and recent developments. We then review deep learning methods for computer-aided analysis of four typical brain disorders, including Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, and Schizophrenia, where the first two diseases are neurodegenerative disorders and the last two are neurodevelopmental and psychiatric disorders, respectively. More importantly, we discuss the limitations of existing studies and present possible future directions.
Collapse
Affiliation(s)
- Li Zhang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
18
|
Wang M, Lian C, Yao D, Zhang D, Liu M, Shen D. Spatial-Temporal Dependency Modeling and Network Hub Detection for Functional MRI Analysis via Convolutional-Recurrent Network. IEEE Trans Biomed Eng 2020; 67:2241-2252. [PMID: 31825859 PMCID: PMC7439279 DOI: 10.1109/tbme.2019.2957921] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection.
Collapse
Affiliation(s)
- Mingliang Wang
- M. Wang and D. Zhang are with the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China. D. Yao is with Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. C. Lian, M. Liu and D. Shen are with the Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA. D. Shen is also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chunfeng Lian
- M. Wang and D. Zhang are with the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China. D. Yao is with Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. C. Lian, M. Liu and D. Shen are with the Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA. D. Shen is also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongren Yao
- M. Wang and D. Zhang are with the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China. D. Yao is with Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. C. Lian, M. Liu and D. Shen are with the Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA. D. Shen is also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daoqiang Zhang
- M. Wang and D. Zhang are with the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China. D. Yao is with Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. C. Lian, M. Liu and D. Shen are with the Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA. D. Shen is also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Mingxia Liu
- M. Wang and D. Zhang are with the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China. D. Yao is with Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. C. Lian, M. Liu and D. Shen are with the Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA. D. Shen is also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dinggang Shen
- M. Wang and D. Zhang are with the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China. D. Yao is with Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. C. Lian, M. Liu and D. Shen are with the Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA. D. Shen is also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
19
|
Wang M, Zhang D, Huang J, Yap PT, Shen D, Liu M. Identifying Autism Spectrum Disorder With Multi-Site fMRI via Low-Rank Domain Adaptation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:644-655. [PMID: 31395542 PMCID: PMC7169995 DOI: 10.1109/tmi.2019.2933160] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a wide range of symptoms. Identifying biomarkers for accurate diagnosis is crucial for early intervention of ASD. While multi-site data increase sample size and statistical power, they suffer from inter-site heterogeneity. To address this issue, we propose a multi-site adaption framework via low-rank representation decomposition (maLRR) for ASD identification based on functional MRI (fMRI). The main idea is to determine a common low-rank representation for data from the multiple sites, aiming to reduce differences in data distributions. Treating one site as a target domain and the remaining sites as source domains, data from these domains are transformed (i.e., adapted) to a common space using low-rank representation. To reduce data heterogeneity between the target and source domains, data from the source domains are linearly represented in the common space by those from the target domain. We evaluated the proposed method on both synthetic and real multi-site fMRI data for ASD identification. The results suggest that our method yields superior performance over several state-of-the-art domain adaptation methods.
Collapse
Affiliation(s)
- Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Jiashuang Huang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
20
|
Zhao R, Li S. Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning. Med Image Anal 2020; 60:101593. [DOI: 10.1016/j.media.2019.101593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/25/2019] [Indexed: 01/28/2023]
|