1
|
Chen S, Wang X, Zhang J, Jiang L, Gao F, Xiang J, Yang S, Yang W, Zheng J, Han X. Deep learning-based diagnosis and survival prediction of patients with renal cell carcinoma from primary whole slide images. Pathology 2024; 56:951-960. [PMID: 39168777 DOI: 10.1016/j.pathol.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 08/23/2024]
Abstract
There is an urgent clinical demand to explore novel diagnostic and prognostic biomarkers for renal cell carcinoma (RCC). We proposed deep learning-based artificial intelligence strategies. The study included 1752 whole slide images from multiple centres. Based on the pixel-level of RCC segmentation, the diagnosis diagnostic model achieved an area under the receiver operating characteristic curve (AUC) of 0.977 (95% CI 0.969-0.984) in the external validation cohort. In addition, our diagnostic model exhibited excellent performance in the differential diagnosis of RCC from renal oncocytoma, which achieved an AUC of 0.951 (0.922-0.972). The graderisk for the recognition of high-grade tumour achieved AUCs of 0.840 (0.805-0.871) in the Cancer Genome Atlas (TCGA) cohort, 0.857 (0.813-0.894) in the Shanghai General Hospital (General) cohort, and 0.894 (0.842-0.933) in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) cohort, for the recognition of high-grade tumour. The OSrisk for predicting 5-year survival status achieved an AUC of 0.784 (0.746-0.819) in the TCGA cohort, which was further verified in the independent general cohort and the CPTAC cohort, with AUCs of 0.774 (0.723-0.820) and 0.702 (0.632-0.765), respectively. Moreover, the competing-risk nomogram (CRN) showed its potential to be a prognostic indicator, with a hazard ratio (HR) of 5.664 (3.893-8.239, p<0.0001), outperforming other traditional clinical prognostic indicators. Kaplan-Meier survival analysis further illustrated that our CRN could significantly distinguish patients with high survival risk. Deep learning-based artificial intelligence could be a useful tool for clinicians to diagnose and predict the prognosis of RCC patients, thus improving the process of individualised treatment.
Collapse
Affiliation(s)
- Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiyue Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Liren Jiang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao Han
- Tencent AI Lab, Shenzhen, China.
| |
Collapse
|
2
|
Deng B, Tian Y, Zhang Q, Wang Y, Chai Z, Ye Q, Yao S, Liang T, Li J. NecroGlobalGCN: Integrating micronecrosis information in HCC prognosis prediction via graph convolutional neural networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108435. [PMID: 39357091 DOI: 10.1016/j.cmpb.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Hepatocellular carcinoma (HCC) ranks fourth in cancer mortality, underscoring the importance of accurate prognostic predictions to improve postoperative survival rates in patients. Although micronecrosis has been shown to have high prognostic value in HCC, its application in clinical prognosis prediction requires specialized knowledge and complex calculations, which poses challenges for clinicians. It would be of interest to develop a model to help clinicians make full use of micronecrosis to assess patient survival. METHODS To address these challenges, we propose a HCC prognosis prediction model that integrates pathological micronecrosis information through Graph Convolutional Neural Networks (GCN). This approach enables GCN to utilize micronecrosis, which has been shown to be highly correlated with prognosis, thereby significantly enhancing prognostic stratification quality. We developed our model using 3622 slides from 752 patients with primary HCC from the FAH-ZJUMS dataset and conducted internal and external validations on the FAH-ZJUMS and TCGA-LIHC datasets, respectively. RESULTS Our method outperformed the baseline by 8.18% in internal validation and 9.02% in external validations. Overall, this paper presents a deep learning research paradigm that integrates HCC micronecrosis, enhancing both the accuracy and interpretability of prognostic predictions, with potential applicability to other pathological prognostic markers. CONCLUSIONS This study proposes a composite GCN prognostic model that integrates information on HCC micronecrosis, collecting large dataset of HCC histopathological images. This approach could assist clinicians in analyzing HCC patient survival and precisely locating and visualizing necrotic tissues that affect prognosis. Following the research paradigm outlined in this paper, other prognostic biomarker integration models with GCN could be developed, significantly enhancing the predictive performance and interpretability of prognostic model.
Collapse
Affiliation(s)
- Boyang Deng
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China
| | - Yu Tian
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, and also with Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Yangyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenxin Chai
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China
| | - Qiancheng Ye
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China
| | - Shang Yao
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, and also with Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Jingsong Li
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China; Research Center for Data Hub and Security, Zhejiang Lab, Hangzhou 311100, China.
| |
Collapse
|
3
|
Laurent-Bellue A, Sadraoui A, Claude L, Calderaro J, Posseme K, Vibert E, Cherqui D, Rosmorduc O, Lewin M, Pesquet JC, Guettier C. Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1684-1700. [PMID: 38879083 DOI: 10.1016/j.ajpath.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Liver resection is one of the best treatments for small hepatocellular carcinoma (HCC), but post-resection recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment, making the identification of patients at high risk of recurrence critical. Microvascular invasion (mVI), poor differentiation, pejorative macrotrabecular architectures, and vessels encapsulating tumor clusters architectures are the most accurate histologic predictors of recurrence, but their evaluation is time-consuming and imperfect. Herein, a supervised deep learning-based approach with ResNet34 on 680 whole slide images (WSIs) from 107 liver resection specimens was used to build an algorithm for the identification and quantification of these pejorative architectures. This model achieved an accuracy of 0.864 at patch level and 0.823 at WSI level. To assess its robustness, it was validated on an external cohort of 29 HCCs from another hospital, with an accuracy of 0.787 at WSI level, affirming its generalization capabilities. Moreover, the largest connected areas of the pejorative architectures extracted from the model were positively correlated to the presence of mVI and the number of tumor emboli. These results suggest that the identification of pejorative architectures could be an efficient surrogate of mVI and have a strong predictive value for the risk of recurrence. This study is the first step in the construction of a composite predictive algorithm for early post-resection recurrence of HCC, including artificial intelligence-based features.
Collapse
Affiliation(s)
- Astrid Laurent-Bellue
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Aymen Sadraoui
- Centre de Vision Numérique, Paris-Saclay University, Inria, CentraleSupélec, Gif-sur-Yvette, France
| | - Laura Claude
- Department of Pathology, Charles Nicolle Hospital, Rouen, France
| | - Julien Calderaro
- Department of Pathology, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Katia Posseme
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Eric Vibert
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Daniel Cherqui
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Olivier Rosmorduc
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Maïté Lewin
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Jean-Christophe Pesquet
- Centre de Vision Numérique, Paris-Saclay University, Inria, CentraleSupélec, Gif-sur-Yvette, France
| | - Catherine Guettier
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| |
Collapse
|
4
|
Liu M, Liu Y, Xu P, Cui H, Ke J, Ma J. Exploiting Geometric Features via Hierarchical Graph Pyramid Transformer for Cancer Diagnosis Using Histopathological Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2888-2900. [PMID: 38530716 DOI: 10.1109/tmi.2024.3381994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Cancer is widely recognized as the primary cause of mortality worldwide, and pathology analysis plays a pivotal role in achieving accurate cancer diagnosis. The intricate representation of features in histopathological images encompasses abundant information crucial for disease diagnosis, regarding cell appearance, tumor microenvironment, and geometric characteristics. However, recent deep learning methods have not adequately exploited geometric features for pathological image classification due to the absence of effective descriptors that can capture both cell distribution and gathering patterns, which often serve as potent indicators. In this paper, inspired by clinical practice, a Hierarchical Graph Pyramid Transformer (HGPT) is proposed to guide pathological image classification by effectively exploiting a geometric representation of tissue distribution which was ignored by existing state-of-the-art methods. First, a graph representation is constructed according to morphological feature of input pathological image and learn geometric representation through the proposed multi-head graph aggregator. Then, the image and its graph representation are feed into the transformer encoder layer to model long-range dependency. Finally, a locality feature enhancement block is designed to enhance the 2D local representation of feature embedding, which is not well explored in the existing vision transformers. An extensive experimental study is conducted on Kather-5K, MHIST, NCT-CRC-HE, and GasHisSDB for binary or multi-category classification of multiple cancer types. Results demonstrated that our method is capable of consistently reaching superior classification outcomes for histopathological images, which provide an effective diagnostic tool for malignant tumors in clinical practice.
Collapse
|
5
|
Wang KN, Li SX, Bu Z, Zhao FX, Zhou GQ, Zhou SJ, Chen Y. SBCNet: Scale and Boundary Context Attention Dual-Branch Network for Liver Tumor Segmentation. IEEE J Biomed Health Inform 2024; 28:2854-2865. [PMID: 38427554 DOI: 10.1109/jbhi.2024.3370864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Automated segmentation of liver tumors in CT scans is pivotal for diagnosing and treating liver cancer, offering a valuable alternative to labor-intensive manual processes and ensuring the provision of accurate and reliable clinical assessment. However, the inherent variability of liver tumors, coupled with the challenges posed by blurred boundaries in imaging characteristics, presents a substantial obstacle to achieving their precise segmentation. In this paper, we propose a novel dual-branch liver tumor segmentation model, SBCNet, to address these challenges effectively. Specifically, our proposed method introduces a contextual encoding module, which enables a better identification of tumor variability using an advanced multi-scale adaptive kernel. Moreover, a boundary enhancement module is designed for the counterpart branch to enhance the perception of boundaries by incorporating contour learning with the Sobel operator. Finally, we propose a hybrid multi-task loss function, concurrently concerning tumors' scale and boundary features, to foster interaction across different tasks of dual branches, further improving tumor segmentation. Experimental validation on the publicly available LiTS dataset demonstrates the practical efficacy of each module, with SBCNet yielding competitive results compared to other state-of-the-art methods for liver tumor segmentation.
Collapse
|
6
|
Schattenberg JM, Chalasani N, Alkhouri N. Artificial Intelligence Applications in Hepatology. Clin Gastroenterol Hepatol 2023; 21:2015-2025. [PMID: 37088460 DOI: 10.1016/j.cgh.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/16/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Over the past 2 decades, the field of hepatology has witnessed major developments in diagnostic tools, prognostic models, and treatment options making it one of the most complex medical subspecialties. Through artificial intelligence (AI) and machine learning, computers are now able to learn from complex and diverse clinical datasets to solve real-world medical problems with performance that surpasses that of physicians in certain areas. AI algorithms are currently being implemented in liver imaging, interpretation of liver histopathology, noninvasive tests, prediction models, and more. In this review, we provide a summary of the state of AI in hepatology and discuss current challenges for large-scale implementation including some ethical aspects. We emphasize to the readers that most AI-based algorithms that are discussed in this review are still considered in early development and their utility and impact on patient outcomes still need to be assessed in future large-scale and inclusive studies. Our vision is that the use of AI in hepatology will enhance physician performance, decrease the burden and time spent on documentation, and reestablish the personalized patient-physician relationship that is of utmost importance for obtaining good outcomes.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
| | - Naga Chalasani
- Indiana University School of Medicine and Indiana University Health, Indianapolis, Indiana
| | - Naim Alkhouri
- Arizona Liver Health and University of Arizona, Tucson, Arizona.
| |
Collapse
|
7
|
Chen S, Xiang J, Wang X, Zhang J, Yang S, Yang W, Zheng J, Han X. Deep learning-based pathology signature could reveal lymph node status and act as a novel prognostic marker across multiple cancer types. Br J Cancer 2023; 129:46-53. [PMID: 37137998 PMCID: PMC10307798 DOI: 10.1038/s41416-023-02262-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Identifying lymph node metastasis (LNM) relies mainly on indirect radiology. Current studies omitted the quantified associations with traits beyond cancer types, failing to provide generalisation performance across various tumour types. METHODS 4400 whole slide images across 11 cancer types were collected for training, cross-verification, and external validation of the pan-cancer lymph node metastasis (PC-LNM) model. We proposed an attention-based weakly supervised neural network based on self-supervised cancer-invariant features for the prediction task. RESULTS PC-LNM achieved a test area under the curve (AUC) of 0.732 (95% confidence interval: 0.717-0.746, P < 0.0001) in fivefold cross-validation of multiple cancer types, which also demonstrated good generalisation in the external validation cohort with AUC of 0.699 (95% confidence interval: 0.658-0.737, P < 0.0001). The interpretability results derived from PC-LNM revealed that the regions with the highest attention scores identified by the model generally correspond to tumours with poorly differentiated morphologies. PC-LNM achieved superior performance over previously reported methods and could also act as an independent prognostic factor for patients across multiple tumour types. DISCUSSION We presented an automated pan-cancer model for predicting the LNM status from primary tumour histology, which could act as a novel prognostic marker across multiple cancer types.
Collapse
Affiliation(s)
- Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200135, Shanghai, China
| | | | - Xiyue Wang
- College of Computer Science, Sichuan University, 610065, Chengdu, China
| | - Jun Zhang
- Tencent AI Lab, 518057, Shenzhen, China.
| | - Sen Yang
- Tencent AI Lab, 518057, Shenzhen, China
| | - Wei Yang
- Tencent AI Lab, 518057, Shenzhen, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200135, Shanghai, China.
| | - Xiao Han
- Tencent AI Lab, 518057, Shenzhen, China.
| |
Collapse
|
8
|
Allaume P, Rabilloud N, Turlin B, Bardou-Jacquet E, Loréal O, Calderaro J, Khene ZE, Acosta O, De Crevoisier R, Rioux-Leclercq N, Pecot T, Kammerer-Jacquet SF. Artificial Intelligence-Based Opportunities in Liver Pathology-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13101799. [PMID: 37238283 DOI: 10.3390/diagnostics13101799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Artificial Intelligence (AI)-based Deep Neural Networks (DNNs) can handle a wide range of applications in image analysis, ranging from automated segmentation to diagnostic and prediction. As such, they have revolutionized healthcare, including in the liver pathology field. OBJECTIVE The present study aims to provide a systematic review of applications and performances provided by DNN algorithms in liver pathology throughout the Pubmed and Embase databases up to December 2022, for tumoral, metabolic and inflammatory fields. RESULTS 42 articles were selected and fully reviewed. Each article was evaluated through the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, highlighting their risks of bias. CONCLUSIONS DNN-based models are well represented in the field of liver pathology, and their applications are diverse. Most studies, however, presented at least one domain with a high risk of bias according to the QUADAS-2 tool. Hence, DNN models in liver pathology present future opportunities and persistent limitations. To our knowledge, this review is the first one solely focused on DNN-based applications in liver pathology, and to evaluate their bias through the lens of the QUADAS2 tool.
Collapse
Affiliation(s)
- Pierre Allaume
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Noémie Rabilloud
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Bruno Turlin
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Edouard Bardou-Jacquet
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Department of Liver Diseases CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Olivier Loréal
- Research Unit n°UMR1341 NuMeCan-Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Department of Pathology Henri Mondor, 94000 Créteil, France
- INSERM U955, Team Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers, 94000 Créteil, France
| | - Zine-Eddine Khene
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
- Department of Urology, CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Oscar Acosta
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Renaud De Crevoisier
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
- Department of Radiotherapy, Centre Eugène Marquis, 35033 Rennes, France
| | - Nathalie Rioux-Leclercq
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Thierry Pecot
- Biosit Platform UAR 3480 CNRS US18 INSERM U955, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| | - Solène-Florence Kammerer-Jacquet
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
- Impact TEAM, Laboratoire Traitement du Signal et de l'Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France
| |
Collapse
|
9
|
Zhao Y, Wang X, Che T, Bao G, Li S. Multi-task deep learning for medical image computing and analysis: A review. Comput Biol Med 2023; 153:106496. [PMID: 36634599 DOI: 10.1016/j.compbiomed.2022.106496] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The renaissance of deep learning has provided promising solutions to various tasks. While conventional deep learning models are constructed for a single specific task, multi-task deep learning (MTDL) that is capable to simultaneously accomplish at least two tasks has attracted research attention. MTDL is a joint learning paradigm that harnesses the inherent correlation of multiple related tasks to achieve reciprocal benefits in improving performance, enhancing generalizability, and reducing the overall computational cost. This review focuses on the advanced applications of MTDL for medical image computing and analysis. We first summarize four popular MTDL network architectures (i.e., cascaded, parallel, interacted, and hybrid). Then, we review the representative MTDL-based networks for eight application areas, including the brain, eye, chest, cardiac, abdomen, musculoskeletal, pathology, and other human body regions. While MTDL-based medical image processing has been flourishing and demonstrating outstanding performance in many tasks, in the meanwhile, there are performance gaps in some tasks, and accordingly we perceive the open challenges and the perspective trends. For instance, in the 2018 Ischemic Stroke Lesion Segmentation challenge, the reported top dice score of 0.51 and top recall of 0.55 achieved by the cascaded MTDL model indicate further research efforts in high demand to escalate the performance of current models.
Collapse
Affiliation(s)
- Yan Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiuying Wang
- School of Computer Science, The University of Sydney, Sydney, NSW, 2008, Australia.
| | - Tongtong Che
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Guoqing Bao
- School of Computer Science, The University of Sydney, Sydney, NSW, 2008, Australia
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
He Q, He L, Duan H, Sun Q, Zheng R, Guan J, He Y, Huang W, Guan T. Expression site agnostic histopathology image segmentation framework by self supervised domain adaption. Comput Biol Med 2023; 152:106412. [PMID: 36516576 DOI: 10.1016/j.compbiomed.2022.106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MOTIVATION With the sites of antigen expression different, the segmentation of immunohistochemical (IHC) histopathology images is challenging, due to the visual variances. With H&E images highlighting the tissue structure and cell distribution more broadly, transferring more salient features from H&E images can achieve considerable performance on expression site agnostic IHC images segmentation. METHODS To the best of our knowledge, this is the first work that focuses on domain adaptive segmentation for different expression sites. We propose an expression site agnostic domain adaptive histopathology image semantic segmentation framework (ESASeg). In ESASeg, multi-level feature alignment encodes expression site invariance by learning generic representations of global and multi-scale local features. Moreover, self-supervision enhances domain adaptation to perceive high-level semantics by predicting pseudo-labels. RESULTS We construct a dataset with three IHCs (Her2 with membrane stained, Ki67 with nucleus stained, GPC3 with cytoplasm stained) with different expression sites from two diseases (breast and liver cancer). Intensive experiments on tumor region segmentation illustrate that ESASeg performs best across all metrics, and the implementation of each module proves to achieve impressive improvements. CONCLUSION The performance of ESASeg on the tumor region segmentation demonstrates the efficiency of the proposed framework, which provides a novel solution on expression site agnostic IHC related tasks. Moreover, the proposed domain adaption and self-supervision module can improve feature domain adaption and extraction without labels. In addition, ESASeg lays the foundation to perform joint analysis and information interaction for IHCs with different expression sites.
Collapse
Affiliation(s)
- Qiming He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Ling He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Hufei Duan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Qiehe Sun
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Runliang Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Jian Guan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Yonghong He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Wenting Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Tian Guan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
11
|
Huang X, Yao C, Xu F, Chen L, Wang H, Chen X, Ye J, Wang Y. MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification. J Pers Med 2022; 13:jpm13010089. [PMID: 36675750 PMCID: PMC9863962 DOI: 10.3390/jpm13010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Eyelid tumors are tumors that occur in the eye and its appendages, affecting vision and appearance, causing blindness and disability, and some having a high lethality rate. Pathological images of eyelid tumors are characterized by large pixels, multiple scales, and similar features. Solving the problem of difficult and time-consuming fine-grained classification of pathological images is important to improve the efficiency and quality of pathological diagnosis. The morphology of Basal Cell Carcinoma (BCC), Meibomian Gland Carcinoma (MGC), and Cutaneous Melanoma (CM) in eyelid tumors are very similar, and it is easy to be misdiagnosed among each category. In addition, the diseased area, which is decisive for the diagnosis of the disease, usually occupies only a relatively minor portion of the entire pathology section, and screening the area of interest is a tedious and time-consuming task. In this paper, deep learning techniques to investigate the pathological images of eyelid tumors. Inspired by the knowledge distillation process, we propose the Multiscale-Attention-Crop-ResNet (MAC-ResNet) network model to achieve the automatic classification of three malignant tumors and the automatic localization of whole slide imaging (WSI) lesion regions using U-Net. The final accuracy rates of the three classification problems of eyelid tumors on MAC-ResNet were 96.8%, 94.6%, and 90.8%, respectively.
Collapse
Affiliation(s)
- Xingru Huang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou 310042, China
- School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Chunlei Yao
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng Xu
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310005, China
| | - Lingxiao Chen
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310005, China
| | - Huaqiong Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou 310042, China
| | - Xiaodiao Chen
- College of Media Engineering, Communication University of Zhejiang, Hangzhou 310042, China
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310005, China
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yaqi Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou 310042, China
- Correspondence:
| |
Collapse
|
12
|
Qiao Y, Zhao L, Luo C, Luo Y, Wu Y, Li S, Bu D, Zhao Y. Multi-modality artificial intelligence in digital pathology. Brief Bioinform 2022; 23:6702380. [PMID: 36124675 PMCID: PMC9677480 DOI: 10.1093/bib/bbac367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianhe Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| | - Chunlong Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengtong Li
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| |
Collapse
|
13
|
Yu Y, Tao Y, Guan H, Xiao S, Li F, Yu C, Liu Z, Li J. A multi-branch hierarchical attention network for medical target segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Liu Y, He Q, Duan H, Shi H, Han A, He Y. Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:6053. [PMID: 36015814 PMCID: PMC9414209 DOI: 10.3390/s22166053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Tumor segmentation is a fundamental task in histopathological image analysis. Creating accurate pixel-wise annotations for such segmentation tasks in a fully-supervised training framework requires significant effort. To reduce the burden of manual annotation, we propose a novel weakly supervised segmentation framework based on sparse patch annotation, i.e., only small portions of patches in an image are labeled as 'tumor' or 'normal'. The framework consists of a patch-wise segmentation model called PSeger, and an innovative semi-supervised algorithm. PSeger has two branches for patch classification and image classification, respectively. This two-branch structure enables the model to learn more general features and thus reduce the risk of overfitting when learning sparsely annotated data. We incorporate the idea of consistency learning and self-training into the semi-supervised training strategy to take advantage of the unlabeled images. Trained on the BCSS dataset with only 25% of the images labeled (five patches for each labeled image), our proposed method achieved competitive performance compared to the fully supervised pixel-wise segmentation models. Experiments demonstrate that the proposed solution has the potential to reduce the burden of labeling histopathological images.
Collapse
Affiliation(s)
- Yiqing Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Qiming He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Hufei Duan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yonghong He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
15
|
Mehta S, Lu X, Wu W, Weaver D, Hajishirzi H, Elmore JG, Shapiro LG. End-to-End diagnosis of breast biopsy images with transformers. Med Image Anal 2022; 79:102466. [PMID: 35525135 PMCID: PMC10162595 DOI: 10.1016/j.media.2022.102466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 02/25/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
Abstract
Diagnostic disagreements among pathologists occur throughout the spectrum of benign to malignant lesions. A computer-aided diagnostic system capable of reducing uncertainties would have important clinical impact. To develop a computer-aided diagnosis method for classifying breast biopsy images into a range of diagnostic categories (benign, atypia, ductal carcinoma in situ, and invasive breast cancer), we introduce a transformer-based hollistic attention network called HATNet. Unlike state-of-the-art histopathological image classification systems that use a two pronged approach, i.e., they first learn local representations using a multi-instance learning framework and then combine these local representations to produce image-level decisions, HATNet streamlines the histopathological image classification pipeline and shows how to learn representations from gigapixel size images end-to-end. HATNet extends the bag-of-words approach and uses self-attention to encode global information, allowing it to learn representations from clinically relevant tissue structures without any explicit supervision. It outperforms the previous best network Y-Net, which uses supervision in the form of tissue-level segmentation masks, by 8%. Importantly, our analysis reveals that HATNet learns representations from clinically relevant structures, and it matches the classification accuracy of 87 U.S. pathologists for this challenging test set.
Collapse
Affiliation(s)
| | - Ximing Lu
- University of Washington, Seattle, USA
| | - Wenjun Wu
- University of Washington, Seattle, USA
| | - Donald Weaver
- Department of Pathology, The University of Vermont College of Medicine, USA
| | | | - Joann G Elmore
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | | |
Collapse
|
16
|
Chen WM, Fu M, Zhang CJ, Xing QQ, Zhou F, Lin MJ, Dong X, Huang J, Lin S, Hong MZ, Zheng QZ, Pan JS. Deep Learning-Based Universal Expert-Level Recognizing Pathological Images of Hepatocellular Carcinoma and Beyond. Front Med (Lausanne) 2022; 9:853261. [PMID: 35530044 PMCID: PMC9072864 DOI: 10.3389/fmed.2022.853261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aims We aim to develop a diagnostic tool for pathological-image classification using transfer learning that can be applied to diverse tumor types. Methods Microscopic images of liver tissue with and without hepatocellular carcinoma (HCC) were used to train and validate the classification framework based on a convolutional neural network. To evaluate the universal classification performance of the artificial intelligence (AI) framework, histological images from colorectal tissue and the breast were collected. Images for the training and validation sets were obtained from the Xiamen Hospital of Traditional Chinese Medicine, and those for the test set were collected from Zhongshan Hospital Xiamen University. The accuracy, sensitivity, and specificity values for the proposed framework were reported and compared with those of human image interpretation. Results In the human–machine comparisons, the sensitivity, and specificity for the AI algorithm were 98.0, and 99.0%, whereas for the human experts, the sensitivity ranged between 86.0 and 97.0%, while the specificity ranged between 91.0 and 100%. Based on transfer learning, the accuracies of the AI framework in classifying colorectal carcinoma and breast invasive ductal carcinoma were 96.8 and 96.0%, respectively. Conclusion The performance of the proposed AI framework in classifying histological images with HCC was comparable to the classification performance achieved by human experts, indicating that extending the proposed AI’s application to diagnoses and treatment recommendations is a promising area for future investigation.
Collapse
Affiliation(s)
- Wei-Ming Chen
- Liver Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Min Fu
- School of Aerospace Engineering, Xiamen University, Xiamen, China
| | - Cheng-Ju Zhang
- Department of Anesthesiology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Qing-Qing Xing
- Liver Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fei Zhou
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Meng-Jie Lin
- Department of Pathology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Xuan Dong
- Liver Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Jiaofeng Huang
- Liver Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Su Lin
- Liver Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Mei-Zhu Hong
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Qi-Zhong Zheng
- Department of Pathology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
- *Correspondence: Qi-Zhong Zheng,
| | - Jin-Shui Pan
- Liver Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Jin-Shui Pan,
| |
Collapse
|
17
|
Diao S, Tian Y, Hu W, Hou J, Lambo R, Zhang Z, Xie Y, Nie X, Zhang F, Racoceanu D, Qin W. Weakly Supervised Framework for Cancer Region Detection of Hepatocellular Carcinoma in Whole-Slide Pathologic Images Based on Multiscale Attention Convolutional Neural Network. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:553-563. [PMID: 34896390 DOI: 10.1016/j.ajpath.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Visual inspection of hepatocellular carcinoma cancer regions by experienced pathologists in whole-slide images (WSIs) is a challenging, labor-intensive, and time-consuming task because of the large scale and high resolution of WSIs. Therefore, a weakly supervised framework based on a multiscale attention convolutional neural network (MSAN-CNN) was introduced into this process. Herein, patch-based images with image-level normal/tumor annotation (rather than images with pixel-level annotation) were fed into a classification neural network. To further improve the performances of cancer region detection, multiscale attention was introduced into the classification neural network. A total of 100 cases were obtained from The Cancer Genome Atlas and divided into 70 training and 30 testing data sets that were fed into the MSAN-CNN framework. The experimental results showed that this framework significantly outperforms the single-scale detection method according to the area under the curve and accuracy, sensitivity, and specificity metrics. When compared with the diagnoses made by three pathologists, MSAN-CNN performed better than a junior- and an intermediate-level pathologist, and slightly worse than a senior pathologist. Furthermore, MSAN-CNN provided a very fast detection time compared with the pathologists. Therefore, a weakly supervised framework based on MSAN-CNN has great potential to assist pathologists in the fast and accurate detection of cancer regions of hepatocellular carcinoma on WSIs.
Collapse
Affiliation(s)
- Songhui Diao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Science, Shenzhen, China
| | - Yinli Tian
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Hou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Science, Shenzhen, China
| | - Ricardo Lambo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhicheng Zhang
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Science, Shenzhen, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa Zhang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Daniel Racoceanu
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau-ICM, Institut National de Santé et en Recherche Médicale, Centre National de Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Wenjian Qin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Science, Shenzhen, China.
| |
Collapse
|
18
|
Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100443. [PMID: 35243281 PMCID: PMC8867112 DOI: 10.1016/j.jhepr.2022.100443] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022]
Abstract
Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of metabolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quantitative information from multiple data sources to make a diagnosis, prognosticate the disease course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI), particularly in deep learning, have made it possible to extract clinically relevant information from complex and diverse clinical datasets. In particular, histopathology and radiology image data contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI systems could be implemented in clinical routine as decision support tools. However, in the context of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein, we summarise the state of the art in AI in hepatology with a particular focus on histopathology and radiology data. We present a roadmap for the further development of novel biomarkers in hepatology and outline critical obstacles which need to be overcome.
Collapse
|
19
|
Bao L, Wang M, Fan Q. Hsa_circ_NOTCH3 regulates ZNF146 through sponge adsorption of miR-875-5p to promote tumorigenesis of hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:2388-2402. [PMID: 34790400 DOI: 10.21037/jgo-21-567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background To explore the specific mechanism of circular RNA (circRNA) in the occurrence and development of hepatocellular carcinoma (HCC), and provide new ideas for its diagnosis and treatment. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was for evaluating the expression of circ_NOTCH3 in liver cancer tissues and matched normal tissues and related cell lines. After overexpression or co-expression of circ_NOTCH3 or microRNA (miRNA) in cells, the changes in cell function were analyzed. Bioinformatics analysis and dual luciferase report analysis were utilized to predict and verify the binding site between circ_NOTCH3 and miRNA. Western blotting was applied to detect gene expression alterations. Additionally, in vivo tumor growth was also utilized to further assess the influence of knocking-down circ_NOTCH3 on the progression of HCC. Results It was confirmed circ_NOTCH3 was highly expressed in HCC specimens and cells. The proliferation, migration, invasion, and oxaliplatin-resistance potential of HCC could be restrained by silencing circ_NOTCH3 or by ectopic expression of miR-875-5p in vitro. In terms of mechanism, circ_NOTCH3 directly binds to miR-875-5p, regulating its activity by targeting the 3'-UTR of ZNF146. Overexpression of circ_NOTCH3 evidently overturned the diminishing influence of miR-875-5p mimics on HCC cells. Conclusions As an oncogene, circ_NOTCH3 can trigger the proliferation, invasion, migration, and oxaliplatin resistance of HCC cells through the miR-875-5p/ZNF146 axis, and may be a promising target for the treatment of HCC.
Collapse
Affiliation(s)
- Lei Bao
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Min Wang
- Department of Pathology, Qishan (Infectious Disease) Hospital of Yantai, Yantai, China
| | - Qiqi Fan
- Department of Liver Disease, Qingdao No. 6 People's Hospital, Qingdao, China
| |
Collapse
|
20
|
Janssen BV, Theijse R, van Roessel S, de Ruiter R, Berkel A, Huiskens J, Busch OR, Wilmink JW, Kazemier G, Valkema P, Farina A, Verheij J, de Boer OJ, Besselink MG. Artificial Intelligence-Based Segmentation of Residual Tumor in Histopathology of Pancreatic Cancer after Neoadjuvant Treatment. Cancers (Basel) 2021; 13:cancers13205089. [PMID: 34680241 PMCID: PMC8533716 DOI: 10.3390/cancers13205089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The use of neoadjuvant therapy (NAT) in patients with pancreatic ductal adenocarcinoma (PDAC) is increasing. Objective quantification of the histopathological response to NAT may be used to guide adjuvant treatment and compare the efficacy of neoadjuvant regimens. However, current tumor response scoring (TRS) systems suffer from interobserver variability, originating from subjective definitions, the sometimes challenging histology, and response heterogeneity throughout the tumor bed. This study investigates if artificial intelligence-based segmentation of residual tumor burden in histopathology of PDAC after NAT may offer a more objective and reproducible TRS solution. Abstract Background: Histologic examination of resected pancreatic cancer after neoadjuvant therapy (NAT) is used to assess the effect of NAT and may guide the choice for adjuvant treatment. However, evaluating residual tumor burden in pancreatic cancer is challenging given tumor response heterogeneity and challenging histomorphology. Artificial intelligence techniques may offer a more reproducible approach. Methods: From 64 patients, one H&E-stained slide of resected pancreatic cancer after NAT was digitized. Three separate classes were manually outlined in each slide (i.e., tumor, normal ducts, and remaining epithelium). Corresponding segmentation masks and patches were generated and distributed over training, validation, and test sets. Modified U-nets with varying encoders were trained, and F1 scores were obtained to express segmentation accuracy. Results: The highest mean segmentation accuracy was obtained using modified U-nets with a DenseNet161 encoder. Tumor tissue was segmented with a high mean F1 score of 0.86, while the overall multiclass average F1 score was 0.82. Conclusions: This study shows that artificial intelligence-based assessment of residual tumor burden is feasible given the promising obtained F1 scores for tumor segmentation. This model could be developed into a tool for the objective evaluation of the response to NAT and may potentially guide the choice for adjuvant treatment.
Collapse
Affiliation(s)
- Boris V. Janssen
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (B.V.J.); (R.T.); (S.v.R.); (O.R.B.)
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (P.V.); (A.F.); (J.V.); (O.J.d.B.)
| | - Rutger Theijse
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (B.V.J.); (R.T.); (S.v.R.); (O.R.B.)
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (P.V.); (A.F.); (J.V.); (O.J.d.B.)
| | - Stijn van Roessel
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (B.V.J.); (R.T.); (S.v.R.); (O.R.B.)
| | - Rik de Ruiter
- SAS Institute Besloten Vennootschap, 1272 PC Huizen, The Netherlands; (R.d.R.); (A.B.); (J.H.)
| | - Antonie Berkel
- SAS Institute Besloten Vennootschap, 1272 PC Huizen, The Netherlands; (R.d.R.); (A.B.); (J.H.)
| | - Joost Huiskens
- SAS Institute Besloten Vennootschap, 1272 PC Huizen, The Netherlands; (R.d.R.); (A.B.); (J.H.)
| | - Olivier R. Busch
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (B.V.J.); (R.T.); (S.v.R.); (O.R.B.)
| | - Johanna W. Wilmink
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
| | - Pieter Valkema
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (P.V.); (A.F.); (J.V.); (O.J.d.B.)
| | - Arantza Farina
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (P.V.); (A.F.); (J.V.); (O.J.d.B.)
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (P.V.); (A.F.); (J.V.); (O.J.d.B.)
| | - Onno J. de Boer
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (P.V.); (A.F.); (J.V.); (O.J.d.B.)
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, 1081 HV Amsterdam, The Netherlands; (B.V.J.); (R.T.); (S.v.R.); (O.R.B.)
- Correspondence: ; Tel.: +31-20-444-4444
| |
Collapse
|
21
|
Madabhushi A, Reyes-Aldasoro CC. Special issue on computational pathology: An overview. Med Image Anal 2021; 73:102151. [PMID: 34329904 DOI: 10.1016/j.media.2021.102151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, United States
| | | |
Collapse
|
22
|
Kobayashi S, Saltz JH, Yang VW. State of machine and deep learning in histopathological applications in digestive diseases. World J Gastroenterol 2021; 27:2545-2575. [PMID: 34092975 PMCID: PMC8160628 DOI: 10.3748/wjg.v27.i20.2545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Machine learning (ML)- and deep learning (DL)-based imaging modalities have exhibited the capacity to handle extremely high dimensional data for a number of computer vision tasks. While these approaches have been applied to numerous data types, this capacity can be especially leveraged by application on histopathological images, which capture cellular and structural features with their high-resolution, microscopic perspectives. Already, these methodologies have demonstrated promising performance in a variety of applications like disease classification, cancer grading, structure and cellular localizations, and prognostic predictions. A wide range of pathologies requiring histopathological evaluation exist in gastroenterology and hepatology, indicating these as disciplines highly targetable for integration of these technologies. Gastroenterologists have also already been primed to consider the impact of these algorithms, as development of real-time endoscopic video analysis software has been an active and popular field of research. This heightened clinical awareness will likely be important for future integration of these methods and to drive interdisciplinary collaborations on emerging studies. To provide an overview on the application of these methodologies for gastrointestinal and hepatological histopathological slides, this review will discuss general ML and DL concepts, introduce recent and emerging literature using these methods, and cover challenges moving forward to further advance the field.
Collapse
Affiliation(s)
- Soma Kobayashi
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Joel H Saltz
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook , NY 11794, United States
| |
Collapse
|
23
|
Hussein S. Automatic layer segmentation in H&E images of mice skin based on colour deconvolution and fuzzy C-mean clustering. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|