1
|
Song R, Cao P, Wen G, Zhao P, Huang Z, Zhang X, Yang J, Zaiane OR. BrainDAS: Structure-aware domain adaptation network for multi-site brain network analysis. Med Image Anal 2024; 96:103211. [PMID: 38796945 DOI: 10.1016/j.media.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
In the medical field, datasets are mostly integrated across sites due to difficult data acquisition and insufficient data at a single site. The domain shift problem caused by the heterogeneous distribution among multi-site data makes autism spectrum disorder (ASD) hard to identify. Recently, domain adaptation has received considerable attention as a promising solution. However, domain adaptation on graph data like brain networks has not been fully studied. It faces two major challenges: (1) complex graph structure; and (2) multiple source domains. To overcome the issues, we propose an end-to-end structure-aware domain adaptation framework for brain network analysis (BrainDAS) using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed approach contains two stages: supervision-guided multi-site graph domain adaptation with dynamic kernel generation and graph classification with attention-based graph pooling. We evaluate our BrainDAS on a public dataset provided by Autism Brain Imaging Data Exchange (ABIDE) which includes 871 subjects from 17 different sites, surpassing state-of-the-art algorithms in several different evaluation settings. Furthermore, our promising results demonstrate the interpretability and generalization of the proposed method. Our code is available at https://github.com/songruoxian/BrainDAS.
Collapse
Affiliation(s)
- Ruoxian Song
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Peng Cao
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.
| | - Guangqi Wen
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing, China
| | - Ziheng Huang
- College of Software, Northeastern University, Shenyang, China
| | - Xizhe Zhang
- Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.
| | | |
Collapse
|
2
|
Falcó-Roget J, Cacciola A, Sambataro F, Crimi A. Functional and structural reorganization in brain tumors: a machine learning approach using desynchronized functional oscillations. Commun Biol 2024; 7:419. [PMID: 38582867 PMCID: PMC10998892 DOI: 10.1038/s42003-024-06119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Neuroimaging studies have allowed for non-invasive mapping of brain networks in brain tumors. Although tumor core and edema are easily identifiable using standard MRI acquisitions, imaging studies often neglect signals, structures, and functions within their presence. Therefore, both functional and diffusion signals, as well as their relationship with global patterns of connectivity reorganization, are poorly understood. Here, we explore the functional activity and the structure of white matter fibers considering the contribution of the whole tumor in a surgical context. First, we find intertwined alterations in the frequency domain of local and spatially distributed resting-state functional signals, potentially arising within the tumor. Second, we propose a fiber tracking pipeline capable of using anatomical information while still reconstructing bundles in tumoral and peritumoral tissue. Finally, using machine learning and healthy anatomical information, we predict structural rearrangement after surgery given the preoperative brain network. The generative model also disentangles complex patterns of connectivity reorganization for different types of tumors. Overall, we show the importance of carefully designing studies including MR signals within damaged brain tissues, as they exhibit and relate to non-trivial patterns of both structural and functional (dis-)connections or activity.
Collapse
Affiliation(s)
- Joan Falcó-Roget
- Brain and More Lab, Computer Vision, Sano Centre for Computational Medicine, Kraków, Poland.
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Fabio Sambataro
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Alessandro Crimi
- Brain and More Lab, Computer Vision, Sano Centre for Computational Medicine, Kraków, Poland.
- Faculty of Computer Science, AGH University of Krakow, Kraków, Poland.
| |
Collapse
|
3
|
Farazi M, Yang Z, Zhu W, Qiu P, Wang Y. TetCNN: Convolutional Neural Networks on Tetrahedral Meshes. INFORMATION PROCESSING IN MEDICAL IMAGING : PROCEEDINGS OF THE ... CONFERENCE 2023; 13939:303-315. [PMID: 38179190 PMCID: PMC10765307 DOI: 10.1007/978-3-031-34048-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Convolutional neural networks (CNN) have been broadly studied on images, videos, graphs, and triangular meshes. However, it has seldom been studied on tetrahedral meshes. Given the merits of using volumetric meshes in applications like brain image analysis, we introduce a novel interpretable graph CNN framework for the tetrahedral mesh structure. Inspired by ChebyNet, our model exploits the volumetric Laplace-Beltrami Operator (LBO) to define filters over commonly used graph Laplacian which lacks the Riemannian metric information of 3D manifolds. For pooling adaptation, we introduce new objective functions for localized minimum cuts in the Graclus algorithm based on the LBO. We employ a piece-wise constant approximation scheme that uses the clustering assignment matrix to estimate the LBO on sampled meshes after each pooling. Finally, adapting the Gradient-weighted Class Activation Mapping algorithm for tetrahedral meshes, we use the obtained heatmaps to visualize discovered regions-of-interest as biomarkers. We demonstrate the effectiveness of our model on cortical tetrahedral meshes from patients with Alzheimer's disease, as there is scientific evidence showing the correlation of cortical thickness to neurodegenerative disease progression. Our results show the superiority of our LBO-based convolution layer and adapted pooling over the conventionally used unitary cortical thickness, graph Laplacian, and point cloud representation.
Collapse
Affiliation(s)
- Mohammad Farazi
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
| | - Zhangsihao Yang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
| | - Wenhui Zhu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
| | - Peijie Qiu
- McKeley School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
4
|
Longitudinal Infant Functional Connectivity Prediction via Conditional Intensive Triplet Network. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2022; 13438:255-264. [PMID: 36563062 PMCID: PMC9769983 DOI: 10.1007/978-3-031-16452-1_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Longitudinal infant brain functional connectivity (FC) constructed from resting-state functional MRI (rs-fMRI) has increasingly become a pivotal tool in studying the dynamics of early brain development. However, due to various reasons including high acquisition cost, strong motion artifact, and subject dropout, there has been an extreme shortage of usable longitudinal infant rs-fMRI scans to construct longitudinal FCs, which hinders comprehensive understanding and modeling of brain functional development at early ages. To address this issue, in this paper, we propose a novel conditional intensive triplet network (CITN) for longitudinal prediction of the dynamic development of infant FC, which can traverse FCs within a long duration and predict the target FC at any specific age during infancy. Targeting at accurately modeling of the progression pattern of FC, while maintaining the individual functional uniqueness, our model effectively disentangles the intrinsically mixed age-related and identity-related information from the source FC and predicts the target FC by fusing well-disentangled identity-related information with the specific age-related information. Specifically, we introduce an intensive triplet auto-encoder for effective disentanglement of age-related and identity-related information and an identity conditional module to mix identity-related information with designated age-related information. We train the proposed model in a self-supervised way and design downstream tasks to help robustly disentangle age-related and identity-related features. Experiments on 464 longitudinal infant fMRI scans show the superior performance of the proposed method in longitudinal FC prediction in comparison with state-of-the-art approaches.
Collapse
|
5
|
Zhong M, Li F, Chen W. Automatic arrhythmia detection with multi-lead ECG signals based on heterogeneous graph attention networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:12448-12471. [PMID: 36654006 DOI: 10.3934/mbe.2022581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Automatic arrhythmia detection is very important for cardiovascular health. It is generally performed by measuring the electrocardiogram (ECG) signals of standard multiple leads. However, the correlations of multiple leads are often ignored. In addition, an extensive and complex feature extraction process is usually needed in most existing studies. Therefore, these challenges will not only lead to the loss of overall lead information, but also cause the detection performance to depend on the quality of features. To solve these challenges, a novel multi-lead arrhythmia detection model based on a heterogeneous graph attention network is proposed in this paper. We have modeled the multi-lead data as a heterogeneous graph to integrate diverse information and construct intra-lead and inter-lead correlations in multi-lead data, providing a reasonable and effective the data model. A heterogeneous graph network with a dual-level attention strategy has been utilized to capture the interactions among diverse information and information types. At the same time, our model does not require any feature extraction process for the ECG signals, which avoids out complex feature engineering. Extensive experimental results show that multi-lead information and complex correlations can be well captured, thus confirming that the proposed model results in significant improvements in multi-lead arrhythmia detection.
Collapse
Affiliation(s)
- MingHao Zhong
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenghuan Li
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Weihong Chen
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Ali H, Biswas R, Ali F, Shah U, Alamgir A, Mousa O, Shah Z. The role of generative adversarial networks in brain MRI: a scoping review. Insights Imaging 2022; 13:98. [PMID: 35662369 PMCID: PMC9167371 DOI: 10.1186/s13244-022-01237-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
The performance of artificial intelligence (AI) for brain MRI can improve if enough data are made available. Generative adversarial networks (GANs) showed a lot of potential to generate synthetic MRI data that can capture the distribution of real MRI. Besides, GANs are also popular for segmentation, noise removal, and super-resolution of brain MRI images. This scoping review aims to explore how GANs methods are being used on brain MRI data, as reported in the literature. The review describes the different applications of GANs for brain MRI, presents the most commonly used GANs architectures, and summarizes the publicly available brain MRI datasets for advancing the research and development of GANs-based approaches. This review followed the guidelines of PRISMA-ScR to perform the study search and selection. The search was conducted on five popular scientific databases. The screening and selection of studies were performed by two independent reviewers, followed by validation by a third reviewer. Finally, the data were synthesized using a narrative approach. This review included 139 studies out of 789 search results. The most common use case of GANs was the synthesis of brain MRI images for data augmentation. GANs were also used to segment brain tumors and translate healthy images to diseased images or CT to MRI and vice versa. The included studies showed that GANs could enhance the performance of AI methods used on brain MRI imaging data. However, more efforts are needed to transform the GANs-based methods in clinical applications.
Collapse
Affiliation(s)
- Hazrat Ali
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar.
| | - Rafiul Biswas
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Farida Ali
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Uzair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Asma Alamgir
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Osama Mousa
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Zubair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar.
| |
Collapse
|
7
|
Bi XA, Li L, Wang Z, Wang Y, Luo X, Xu L. IHGC-GAN: influence hypergraph convolutional generative adversarial network for risk prediction of late mild cognitive impairment based on imaging genetic data. Brief Bioinform 2022; 23:6554128. [PMID: 35348583 DOI: 10.1093/bib/bbac093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Predicting disease progression in the initial stage to implement early intervention and treatment can effectively prevent the further deterioration of the condition. Traditional methods for medical data analysis usually fail to perform well because of their incapability for mining the correlation pattern of pathogenies. Therefore, many calculation methods have been excavated from the field of deep learning. In this study, we propose a novel method of influence hypergraph convolutional generative adversarial network (IHGC-GAN) for disease risk prediction. First, a hypergraph is constructed with genes and brain regions as nodes. Then, an influence transmission model is built to portray the associations between nodes and the transmission rule of disease information. Third, an IHGC-GAN method is constructed based on this model. This method innovatively combines the graph convolutional network (GCN) and GAN. The GCN is used as the generator in GAN to spread and update the lesion information of nodes in the brain region-gene hypergraph. Finally, the prediction accuracy of the method is improved by the mutual competition and repeated iteration between generator and discriminator. This method can not only capture the evolutionary pattern from early mild cognitive impairment (EMCI) to late MCI (LMCI) but also extract the pathogenic factors and predict the deterioration risk from EMCI to LMCI. The results on the two datasets indicate that the IHGC-GAN method has better prediction performance than the advanced methods in a variety of indicators.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, and the College of Information Science and Engineering in Hunan Normal University, Changsha 410081, P.R. China
| | - Lou Li
- Department of Computing, School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Zizheng Wang
- Department of Computing, School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yu Wang
- Department of Computing, School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Xun Luo
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, and the College of Information Science and Engineering in Hunan Normal University, Changsha 410081, P.R. China
| | - Luyun Xu
- College of Business, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|