1
|
Qiu S, Dong S, Fan J, Chengji W, Qi X. Effect of high mobility group box 1 pathway inhibition on gene expression in the prefrontal cortex of mice exposed to alcohol. Alcohol 2024:S0741-8329(24)00173-3. [PMID: 39505077 DOI: 10.1016/j.alcohol.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION The high mobility group box 1 (HMGB1) pathway plays a pivotal role in the development of alcohol-induced brain injury. Glycyrrhizinic acid (GlyA) is widely regarded as an inhibitor of HMGB1. The objective is to investigate the impact on gene expression in the prefrontal cortex,we sequenced the transcriptome in control, alcohol-exposed, and HMGB1-inhibited groups of mice. We verified our findings by real-time quantitative PCR (qRT-PCR). METHODS An alcohol exposure model was established in mice by intraperitoneal injection of alcohol. Transcriptome sequencing and bioinformatics analyses were performed on prefrontal cortex tissue. Kyoto Encyclopedia of Genes and Genomes analysis was performed to identify pivotal pathways of differentially expressed genes. The role of relevant genes was verified by qRT-PCR. RESULTS Expression of genes involved in the neuroactive ligand-receptor interaction pathway exhibited an increase in mice from the alcohol-exposed group.However, there were no significant differences observed in the expression of these genes between control and those receiving an intraperitoneal injection of alcohol along with a HMGB1 inhibitor. Mice in the alcohol-exposed group showed increased gene expression of Cysltr2, Chrna6, Chrna3, Chrnb4, and Pmch. Expression of these genes was decreased in mice injected with HMGB1 inhibitor. SIGNIFICANCE Our study demonstrates that alcohol primarily influences gene expression in the prefrontal cortex of mice through the neuroactive ligand-receptor interaction pathway. HMGB1 inhibitor effectively inhibited the expression of this pathway. This study provides a novel route for drug development in alcohol-induced brain injury.
Collapse
Affiliation(s)
- Shuxun Qiu
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Peoples Republic of China
| | - ShuXin Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jiamusi University, Peoples Republic of China
| | - Jingxin Fan
- Jiamusi University, Jiamusi, People's Republic of China
| | - Wu Chengji
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Peoples Republic of China.
| | - Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Peoples Republic of China.
| |
Collapse
|
2
|
Machida A, Banshoya K, Miyamaru A, Eto T, Maehara S, Hieda Y, Hata T, Ohnishi M. A Glycyrrhizin Derivative with a More Potent Inhibitory Activity against High-Mobility Group Box 1 Efficiently Discovered by Chemical Synthesis Inspired by the Bioconversion Products of an Endophytic Fungus Isolated from Licorice. J Med Chem 2024; 67:16328-16337. [PMID: 39231005 DOI: 10.1021/acs.jmedchem.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Glycyrrhizin (GL) from licorice alleviates intracerebral hemorrhage (ICH) injuries by interacting with high-mobility group box (HMGB) 1, an inflammatory factor. We found that GL is bioconverted by endophyte coexisting with licorice and succeeded in isolating two derivatives. The aim of this study was to identify the compound with more potent HMGB1 inhibitory activity inspired by these GL derivatives. We took advantage of a ketone introduced by an endophyte at the C-3 position and attempted methyl esterification at the C-30 position because it was suggested that the water or lipid solubility of the molecule plays an important role. Among three derivatives synthesized, the product that is both ketonized and esterified showed more potent HMGB1 inhibitory activity than GL in macrophages and significantly improved adverse events occurred in ICH in vivo. These results suggest that modification of the hydrophilicity of GL, particularly at the C-3 and C-30 positions, enhances the HMGB1 inhibitory activity.
Collapse
Affiliation(s)
- Aoi Machida
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Kengo Banshoya
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Akiho Miyamaru
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Tamaki Eto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Shoji Maehara
- Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Yuhzo Hieda
- Common Resources Center, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Toshiyuki Hata
- Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
3
|
Li W, Peng Y, Liu J, Wu T, Qiang X, Zhao Q, He D. Discovery and synthesis of novel glyrrhizin-analogs containing furanoylpiperazine and the activity against myocardial injury in sepsis. Bioorg Chem 2024; 153:107846. [PMID: 39341082 DOI: 10.1016/j.bioorg.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The signaling pathway mediated by high mobility group protein B1 (HMGB1) plays a key role in myocardial injury during sepsis. Glyrrhizin (GL) is a natural product that inhibits HMGB1 biological activities through forming GL-HMGB1 complex; the research shows its aglycone (GA) is the main pharmacophore binding to HMGB1, while the glycosyl mainly altering its pharmacokinetic properties and enhances the stability of the complex. GL is often metabolized to GA in the gastrointestinal tract, which has a lower efficacy in the treatment of HMGB1-mediated diseases. To obtain the GL analogs with higher activity and better pharmacokinetic properties, 24 GL analogs were synthesized by simplification the glycosyl of GL. Among all the compounds, compound 11 with furanoylpiperazine was screened. The pharmacokinetics experiments showed that compound 11 is converted to 11a in vivo, and 11 serves as its prodrug. Compound 11a displayed a lower cytotoxicity to RAW264.7 cells and three types of cardiomyocyte lines, with IC50 > 800 µM. In the anti-inflammatory assay, 11a not only strongly inhibited NO production (IC50 5.73 µM), but also down-regulated the levels of HMGB1, IL-1β and TNF-α in a dose-dependent manner; in the anti-oxidative stress assay, compound 11a reduced the level of ROS and increased the MMP in H9c2 cells. More importantly, in the myocardial injury model of septic mice, compound 11a not only alleviated the symptom of myocardial injury by reducing inflammatory infiltration and oxidative stress, but also improved the myocardial blood supply by shrinking the inner diameter of the left ventricle and increasing the ejection fraction (EF) more dramatically (155.8 %); meanwhile, compound 11a adjusted myocardial enzymes in serum of septic mice. In addition, in molecular docking experiments, compound 11a showed stronger HMGB1 binding ability than GL. In summary, compound 11 is a prodrug, which can be converted to 11a in vivo. And compound 11a has a good activity against septic myocardial injury, as well as improving the myocardial blood supply function. This suggests compound 11 is a potential drug candidate for the treatment of septic myocardial injury and deserves further investigate.
Collapse
Affiliation(s)
- Wei Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Yijie Peng
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Jianrong Liu
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Tianbo Wu
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Xin Qiang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Dian He
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Idoudi S, Bedhiafi T, Pedersen S, Elahtem M, Alremawi I, Akhtar S, Dermime S, Merhi M, Uddin S. Role of HMGB1 and its associated signaling pathways in human malignancies. Cell Signal 2023; 112:110904. [PMID: 37757902 DOI: 10.1016/j.cellsig.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The High-Mobility Group Box-1 (HMGB1), a non-histone chromatin-associated protein, plays a crucial role in cancer growth and response to therapy as it retains a pivotal role in promoting both cell death and survival. HMGB1 has been reported to regulate several signaling pathways engaged in inflammation, genome stability, immune function, cell proliferation, cell autophagy, metabolism, and apoptosis. However, the association between HMGB1 and cancer is complex and its mechanism in tumorigenesis needs to be further elucidated. This review aims to understand the role of HMGB1 in human malignancies and discuss the signaling pathways linked to this process to provide a comprehensive understanding on the association of HMGB1 with carcinogenesis. Further, we will review the role of HMGB1 as a target/biomarker for cancer therapy, the therapeutic strategies used to target this protein, and its potential role in preventing or treating cancers. In light of the recent growing evidence linking HMGB1 to cancer progression, we think that it may be suggested as a novel and emergent therapeutic target for cancer therapy. Hence, HMGB1 warrants paramount investigation to comprehensively map its role in tumorigenesis.
Collapse
Affiliation(s)
- Sourour Idoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Shona Pedersen
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed Elahtem
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Sabah Akhtar
- Department of Dermatology and venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
Gadanec LK, Andersson U, Apostolopoulos V, Zulli A. Glycyrrhizic Acid Inhibits High-Mobility Group Box-1 and Homocysteine-Induced Vascular Dysfunction. Nutrients 2023; 15:3186. [PMID: 37513606 PMCID: PMC10383373 DOI: 10.3390/nu15143186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) worsens cardiovascular outcomes by impairing vascular function and promoting chronic inflammation via release of danger-associated molecular patterns, such as high-mobility group box-1 (HMGB-1). Elevated levels of HMGB-1 have recently been reported in patients with HHcy. Therefore, targeting HMGB-1 may be a potential therapy to improve HHcy-induced cardiovascular pathologies. This study aimed to further elucidate HMGB-1's role during acute HHcy and HHcy-induced atherogenesis and to determine if inhibiting HMGB-1 with glycyrrhizic acid (Glyz) improved vascular function. Male New Zealand White rabbits (n = 25) were placed on either a standard control chow (CD; n = 15) or atherogenic diet (AD; n = 10) for 4 weeks. Rabbit serum and Krebs taken from organ bath studies were collected to quantify HMGB-1 levels. Isometric tension analysis was performed on abdominal aorta (AA) rings from CD and AD rabbits. Rings were incubated with homocysteine (Hcy) [3 mM] for 60 min to induce acute HHcy or rhHMGB-1 [100 nM]. Vascular function was assessed by relaxation to cumulative doses of acetylcholine. Markers of vascular dysfunction and inflammation were quantified in the endothelium, media, and adventitia of AA rings. HMGB-1 was significantly upregulated in serum (p < 0.0001) and Krebs (p < 0.0001) after Hcy exposure or an AD. Incubation with Hcy (p < 0.0001) or rhHMGB-1 (p < 0.0001) and an AD (p < 0.0001) significantly reduced relaxation to acetylcholine, which was markedly improved by Glyz. HMGB-1 expression was elevated (p < 0.0001) after Hcy exposure and AD (p < 0.0001) and was normalized after Glyz treatment. Moreover, markers of vascular function, cell stress and inflammation were also reduced after Glyz. These results demonstrate that HMGB-1 has a central role during HHcy-induced vascular dysfunction and inhibiting it with Glyz could be a potential treatment option for cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, 17177 Stockholm, Sweden
| | - Vasso Apostolopoulos
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
6
|
Muthu SA, Sharma R, Qureshi A, Parvez S, Ahmad B. Mechanistic insights into monomer level prevention of amyloid aggregation of lysozyme by glycyrrhizic acid. Int J Biol Macromol 2023; 227:884-895. [PMID: 36549619 DOI: 10.1016/j.ijbiomac.2022.12.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
As the primary bioactive compound of glycyrrhiza rhizome, the triterpene glycoside conjugate Glycyrrhizic acid (GA) has demonstrated neuroprotective effects in vivo. This study evaluates the effectiveness of GA as an inhibitor of GuHCl-induced amyloid aggregation of hen egg white lysozyme (HEWL). Fibril formation as measured by Thioflavin-T fluorescence, 900 light scattering, and 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence illustrated ∼90 % prevention of fibrils at [GA]/[HEWL] ≥2:1. Images of Transmission electron microscopy evidence for the absence of any fibril or amorphous aggregation products. The spectral characteristics of soluble HEWL were in close resemblance to unfolded monomer. Computational and fluorescence investigations performed to analyse GA-HEWL interactions demonstrated slightly higher affinity of GA to unfolded HEWL and aggregation-prone regions. The likely mechanism of monomer level aggregation prevention by GA as dermined by computational, stability, and ANS experiments illustrated that GA modulated the compactness, solvent-accessible surface, and solvent-exposed hydrophobic surfaces of aggregation-prone state of HEWL. Our findings corroborate GA as an effective inhibitor of HEWL amyloid formation. To our knowledge, GA interaction-induced inhibition of aggregation-prone states has not been previously discussed. GA's modulation of aggregation-prone states of disease-related proteins will successfully develop GA as an amyloid inhibitor for clinical trials of amyloidosis and neurodegenerative illnesses.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory, Department of Medical Entomology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Rahul Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Afnaan Qureshi
- Protein Assembly Laboratory, Department of Medical Entomology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Entomology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Entomology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Zhang Q, Wang Y, Wang Z, Mohammed EAH, Zhao Q, He D, Wang Z. Synthesis and anti-inflammatory activities of glycyrrhetinic acid derivatives containing disulfide bond. Bioorg Chem 2021; 119:105542. [PMID: 34902645 DOI: 10.1016/j.bioorg.2021.105542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
A series of glycyrrhetinic acid (GA, aglycone of glycyrrhizic acid) derivatives containing disulfide bond were synthesized and their anti-inflammatory and anti-fibrosis activities were evaluated in vivo and in vitro. Among them, compound 7 displayed the highest toxicity to all the tested cell lines including macrophages. Compounds 3 and 4 showed higher activities than GA in the cell and animal model. In the anti-inflammatory tests, compounds 3 and 4 down-regulated the expressions of several inflammatory factors, such as HMGB1, TLR4, IL-1β, TNF-α and TGF-β1 in LPS-treated RAW264.7 cells in a dose-dependent manner. Compounds 3 and 4 at 30 µM respectively reduced the levels of HMGB1 in the LPS group to 42.7% and 38.2%. In addition, the level of TLR4 decreased to close to that of control group when treated by compound 4 at the concentration of 30 µM. In the process of anti-fibrosis tests using TGF-β1-induced A549 cell line as the model, compounds 3 and 4 also decreased the expression levels of Col1 and α-SMA in a dose-dependent manner. Compound 3 and 4 at 30 µM respectively reduced the expression of α-SMA level by 2.2-fold and 2.6-fold compared to the TGF-β1-treated control group. Moreover, they influenced the ROS level and mitochondrial membrane potential (MMP) in A549 cells. In the paraquat-induced pulmonary fibrosis mice model, the symptoms of inflammation and fibrosis of mice were alleviated after administration of compound 3 or 4. The above results suggest that compounds 3 and 4 may be promising candidates for inflammation and lung fibrosis treatment.
Collapse
Affiliation(s)
- Qiuping Zhang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Yanni Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Zongyuan Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Eyad Abdulwhab Hamoud Mohammed
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Zhen Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Glycyrrhizic Acid Scavenges Reactive Carbonyl Species and Attenuates Glycation-Induced Multiple Protein Modification: An In Vitro and In Silico Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7086951. [PMID: 34712386 PMCID: PMC8548169 DOI: 10.1155/2021/7086951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/05/2022]
Abstract
The current study is aimed at studying the inhibitory effect of glycyrrhizic acid (GA) on D-ribose-mediated protein glycation via various physicochemical analyses and in silico approaches. Being a potent free radical scavenger and a triterpenoid saponin, GA plays a vital role in diminishing the oxidative stress and thus could be an effective inhibitor of the nonenzymatic glycation process. Our data showed that varying concentrations of GA inhibited the in vitro BSA-AGEs via inhibiting the formation of fructosamines, fluorescent AGEs, scavenging protein carbonyl and hydroxymethyl furfural (HMF) content, and protection against D-ribose-induced modification of BSA as evident by increased free Arg and Lys residues in GA-treated Gly-BSA samples. Moreover, GA also attenuated D-ribose-induced alterations in the secondary structure of BSA by protecting the α-helix and β-sheet conformers and amide-I band delocalization. In addition, GA attenuated the modification in β-cross amyloid structures of BSA and in silico molecular interaction study too showed strong binding of GA with higher number of Lys and Arg residues of BSA and binding energy (ΔG) of -8.8 Kcal/mol, when compared either to reference standard aminoguanidine (AG)-BSA complex (ΔG: -4.3 Kcal/mol) or D-ribose-BSA complex (ΔG: -5.2 Kcal/mol). Therefore, GA could be a new and favorable inhibitor of the nonenzymatic glycation process that ameliorates AGEs-related complications via attenuating the AGE formation and glycation-induced multiple protein modifications with a reduced risk of adverse effects on protein structure and functionality; hence, it could be investigated at further preclinical settings for the treatment and management of diabetes and age-associated complications.
Collapse
|
9
|
Akbaribazm M, Goodarzi N, Rahimi M. Female infertility and herbal medicine: An overview of the new findings. Food Sci Nutr 2021; 9:5869-5882. [PMID: 34646552 PMCID: PMC8498057 DOI: 10.1002/fsn3.2523] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Infertility is defined as the failure to achieve a successful pregnancy after 12 months' sexual activity that affects 15%-17% of couples in the world and about 50% of them are related to female infertility factors. In this study, using the PRISMA checklist and MeSH keywords, 128 articles were extracted from various databases (PubMed, Cochrane library, WHO, Iranmedex, Science Direct, SID, and Google Scholar search engine) without language and time restrictions, and 128 articles were selected after eliminating duplicate studies. In this review, we present some solid evidence for role of herbal medicine in the treatment of female infertility. The results of this study showed that different parts of some plants are rich in polyphenolic compounds (isoflavones and flavonoids) and other compounds which are beneficial to in reproductive health in women. The compounds in these plants, along with regulating the female endocrine pathways, and improving symptoms of menopause, treat female reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian failure (POF), endometriosis, hyperprolactinemia, and hypothalamic dysfunction; moreover, because of their anticancer, antioxidant, and antidepressant properties, they can be used in traditional medicine or in the pharmaceutical industry as safe compounds in women's health.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Nader Goodarzi
- Department of Basic Sciences and PathobiologyFaculty of Veterinary MedicineRazi UniversityKermanshahIran
| | - Mohsen Rahimi
- Department of Parasitology and MycologySchool of MedicineStudent Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Soeiro MDNC, Vergoten G, Bailly C. Mechanism of action of glycyrrhizin against Plasmodium falciparum. Mem Inst Oswaldo Cruz 2021; 116:e210084. [PMID: 34431854 PMCID: PMC8384254 DOI: 10.1590/0074-02760210084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022] Open
Abstract
Extracts of the plant Glycyrrhiza glabra (licorice) are used in traditional medicine to treat malaria. The main active components are the saponin glycyrrhizin (GLR) and its active metabolite glycyrrhetinic acid (GA) which both display activities against Plasmodium falciparum. We have identified three main mechanisms at the origin of their anti-plasmodial activity: (i) drug-induced disorganisation of membrane lipid rafts, (ii) blockade of the alarmin protein HMGB1 and (iii) potential inhibition of the detoxifying enzyme glyoxalase 1 (GLO-1) considered as an important drug target for malaria. Our analysis shed light on the mechanism of action of GLR against P. falciparum.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, Institut de Chimie Pharmaceutique Albert Lespagnol, Faculté de Pharmacie, Lille, France
| | | |
Collapse
|
11
|
Feng W, Wang J, Yan X, Zhang Q, Chai L, Wang Q, Shi W, Chen Y, Liu J, Qu Z, Li S, Xie X, Li M. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif 2021; 54:e13048. [PMID: 33948998 PMCID: PMC8168414 DOI: 10.1111/cpr.13048] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES High-mobility group box-1 (HMGB1) and aberrant mitochondrial fission mediated by excessive activation of GTPase dynamin-related protein 1 (Drp1) have been found to be elevated in patients with pulmonary arterial hypertension (PAH) and critically implicated in PAH pathogenesis. However, it remains unknown whether Drp1-mediated mitochondrial fission and which downstream targets of mitochondrial fission mediate HMGB1-induced pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration leading to vascular remodelling in PAH. This study aims to address these issues. METHODS Primary cultured PASMCs were obtained from male Sprague-Dawley (SD) rats. We detected RNA levels by qRT-PCR, protein levels by Western blotting, cell proliferation by Cell Counting Kit-8 (CCK-8) and EdU incorporation assays, migration by wound healing and transwell assays. SD rats were injected with monocrotaline (MCT) to establish PAH. Hemodynamic parameters were measured by closed-chest right heart catheterization. RESULTS HMGB1 increased Drp1 phosphorylation and Drp1-dependent mitochondrial fragmentation through extracellular signal-regulated kinases 1/2 (ERK1/2) signalling activation, and subsequently triggered autophagy activation, which further led to bone morphogenetic protein receptor 2 (BMPR2) lysosomal degradation and inhibitor of DNA binding 1 (Id1) downregulation, and eventually promoted PASMCs proliferation/migration. Inhibition of ERK1/2 cascade, knockdown of Drp1 or suppression of autophagy restored HMGB1-induced reductions of BMPR2 and Id1, and diminished HMGB1-induced PASMCs proliferation/migration. In addition, pharmacological inhibition of HMGB1 by glycyrrhizin, suppression of mitochondrial fission by Mdivi-1 or blockage of autophagy by chloroquine prevented PAH development in MCT-induced rats PAH model. CONCLUSIONS HMGB1 promotes PASMCs proliferation/migration and pulmonary vascular remodelling by activating ERK1/2/Drp1/Autophagy/BMPR2/Id1 axis, suggesting that this cascade might be a potential novel target for management of PAH.
Collapse
Affiliation(s)
- Wei Feng
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jian Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xin Yan
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Limin Chai
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jin Liu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Zhan Qu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| |
Collapse
|
12
|
Wang G, Hiramoto K, Ma N, Yoshikawa N, Ohnishi S, Murata M, Kawanishi S. Glycyrrhizin Attenuates Carcinogenesis by Inhibiting the Inflammatory Response in a Murine Model of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22052609. [PMID: 33807620 PMCID: PMC7961658 DOI: 10.3390/ijms22052609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glycyrrhizin (GL), an important active ingredient of licorice root, which weakens the proinflammatory effects of high-mobility group box 1 (HMGB1) by blocking HMGB1 signaling. In this study, we investigated whether GL could suppress inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer. ICR mice were divided into four groups (n = 5, each)—control group, GL group, colon cancer (CC) group, and GL-treated CC (CC + GL) group, and sacrificed after 20 weeks. Plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using an enzyme-linked immunosorbent assay. The colonic tissue samples were immunohistochemically stained with DNA damage markers (8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxy-guanosine), inflammatory markers (COX-2 and HMGB1), and stem cell markers (YAP1 and SOX9). The average number of colonic tumors and the levels of IL-6 and TNF-α in the CC + GL group were significantly lower than those in the CC group. The levels of all inflammatory and cancer markers were significantly reduced in the CC + GL group. These results suggest that GL inhibits the inflammatory response by binding HMGB1, thereby inhibiting DNA damage and cancer stem cell proliferation and dedifferentiation. In conclusion, GL significantly attenuates the pathogenesis of AOM/DSS-induced colorectal cancer by inhibiting HMGB1-TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Sakuranomori Shiroko Home, Social Service Elderly Facilities, Suzuka University of Medical Science, Suzuka, Mie 513-0816, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie 510-0226, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie 515-0041, Japan;
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan; (K.H.); (S.O.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| | - Shosuke Kawanishi
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
- Correspondence: (M.M.); (S.K.); Tel.: +81-59-231-5011 (M.M.); +81-59-340-0550 (S.K.)
| |
Collapse
|
13
|
Tian T, Yao D, Zheng L, Zhou Z, Duan Y, Liu B, Wang P, Li Y. Sphingosine kinase 1 regulates HMGB1 translocation by directly interacting with calcium/calmodulin protein kinase II-δ in sepsis-associated liver injury. Cell Death Dis 2020; 11:1037. [PMID: 33281190 PMCID: PMC7719708 DOI: 10.1038/s41419-020-03255-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023]
Abstract
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.
Collapse
Affiliation(s)
- Tao Tian
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Danhua Yao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiyuan Zhou
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yantao Duan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Bin Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Bailly C, Vergoten G. Interaction of fumigaclavine C with High Mobility Group Box 1 protein (HMGB1) and its DNA complex: A computational approach. Comput Biol Chem 2020; 89:107409. [DOI: 10.1016/j.compbiolchem.2020.107409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/28/2022]
|
15
|
Bailly C, Vergoten G. Esculentosides: Insights into the potential health benefits, mechanisms of action and molecular targets. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153343. [PMID: 33002830 DOI: 10.1016/j.phymed.2020.153343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/14/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Esculentosides and related phytolaccosides form a group of oleanene-type saponins isolated from plants of the Phytolaccaceae family, essentially Phytolacca esculenta, P. americana and P. acinosa. This chemical family offers a diversity of glycosylated compounds, including molecules with a mono-, di- or tri-saccharide unit at position C-3, and with or without a glucose residue at position C-28. The esculentosides, which derive essentially from the sapogenin jaligonic acid or its 30-methyl ester phytolaccagenin, exhibit anti-inflammatory, antifungal and anticancer activities. PURPOSE The objective of the review was to identify the 26 esculentosides (ES) and phytolaccosides known to date, including 16 monodesmosidic and 10 bidesmosidic saponins, and to review their pharmacological properties and molecular targets. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of scientific databases like Google Scholar and PubMed in January-May 2020. The main keywords used as search terms were related to esculentosides, phytolaccosides and Phytolaccaceae. The systematic search retrieved about 110 papers that were potentially relevant and after an abstract-based selection, 68 studies were analyzed in details and discussed. RESULTS The structural relationship between the compounds and their sapogenin precursors has been studied. In addition, the pharmacological properties of the main ES, such as ES-A, -B and -H, have been analyzed to highlight their mode of action and potential targets. ES-A is a potent inhibitor of the release of cytokines and this anti-inflammatory activity contributes to the anticancer effects observed in vitro and in vivo. Potential molecular targets of ES-A/B include the enzymes cyclooxygenase 2 (COX-2) and casein kinase 2 (CK2). In addition, the targeting of the protein high-mobility group box 1 (HGMB1) by ES-A/B is proposed, based on molecular modeling and the structural analogy with the related saponin glycyrrhizin, a potent HGMB1 alarmin inhibitor. CONCLUSION More work is needed to properly characterize the molecular targets but otherwise compounds like ES-A and ES-H emerge as potent anti-inflammatory and anticancer agents and ES-B as an antifungal agent. A preclinical development of these three compounds should be considered.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F-59006, Lille, France
| |
Collapse
|