1
|
Quintana-Diaz M, Anania P, Juárez-Vela R, Echaniz-Serrano E, Tejada-Garrido CI, Sanchez-Conde P, Nanwani-Nanwani K, Serrano-Lázaro A, Marcos-Neira P, Gero-Escapa M, García-Criado J, Godoy DA. "COAGULATION": a mnemonic device for treating coagulation disorders following traumatic brain injury-a narrative-based method in the intensive care unit. Front Public Health 2023; 11:1309094. [PMID: 38125841 PMCID: PMC10730733 DOI: 10.3389/fpubh.2023.1309094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Coagulopathy associated with isolated traumatic brain injury (C-iTBI) is a frequent complication associated with poor outcomes, primarily due to its role in the development or progression of haemorrhagic brain lesions. The independent risk factors for its onset are age, severity of traumatic brain injury (TBI), volume of fluids administered during resuscitation, and pre-injury use of antithrombotic drugs. Although the pathophysiology of C-iTBI has not been fully elucidated, two distinct stages have been identified: an initial hypocoagulable phase that begins within the first 24 h, dominated by platelet dysfunction and hyperfibrinolysis, followed by a hypercoagulable state that generally starts 72 h after the trauma. The aim of this study was to design an acronym as a mnemonic device to provide clinicians with an auxiliary tool in the treatment of this complication. Methods A narrative analysis was performed in which intensive care physicians were asked to list the key factors related to C-iTBI. The initial sample was comprised of 33 respondents. Respondents who were not physicians, not currently working in or with experience in coagulopathy were excluded. Interviews were conducted for a month until the sample was saturated. Each participant was asked a single question: Can you identify a factor associated with coagulopathy in patients with TBI? Factors identified by respondents were then submitted to a quality check based on published studies and proven evidence. Because all the factors identified had strong support in the literature, none was eliminated. An acronym was then developed to create the mnemonic device. Results and conclusion Eleven factors were identified: cerebral computed tomography, oral anticoagulant & antiplatelet use, arterial blood pressure (Hypotension), goal-directed haemostatic therapy, use fluids cautiously, low calcium levels, anaemia-transfusion, temperature, international normalised ratio (INR), oral antithrombotic reversal, normal acid-base status, forming the acronym "Coagulation." This acronym is a simple mnemonic device, easy to apply for anyone facing the challenge of treating patients of moderate or severe TBI on a daily basis.
Collapse
Affiliation(s)
- Manuel Quintana-Diaz
- Department of Medicine, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Intensive Care Unit, La Paz University Hospital, Madrid, Spain
- Institute for Health Research (idiPAZ), La Paz University Hospital, Madrid, Spain
| | - Pasquale Anania
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero eCura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Raúl Juárez-Vela
- Institute for Health Research (idiPAZ), La Paz University Hospital, Madrid, Spain
- Department of Nursing, University of La Rioja, Logroño, Spain
- Health and Healthcare Research Group (GRUPAC), Faculty of Health Sciences, University of La Rioja, Logroño, Spain
| | - Emmanuel Echaniz-Serrano
- Department of Nursing and Physiatry, Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain
- Aragon Healthcare Service, Aragon, Zaragoza, Spain
| | - Clara Isabel Tejada-Garrido
- Department of Nursing, University of La Rioja, Logroño, Spain
- Health and Healthcare Research Group (GRUPAC), Faculty of Health Sciences, University of La Rioja, Logroño, Spain
| | | | - Kapil Nanwani-Nanwani
- Intensive Care Unit, La Paz University Hospital, Madrid, Spain
- Institute for Health Research (idiPAZ), La Paz University Hospital, Madrid, Spain
| | - Ainhoa Serrano-Lázaro
- Institute for Health Research (idiPAZ), La Paz University Hospital, Madrid, Spain
- Intensive Care Unit, Valencia University Clinical Hospital, Valencia, Spain
| | - Pilar Marcos-Neira
- Intensive Care Unit, Germans Trias i Pujol University Hospital, Badalona, Spain
| | | | | | - Daniel Agustín Godoy
- Critical Care Department, Neurointensive Care Unit, Sanatorio Pasteur, Catamarca, Argentina
| |
Collapse
|
2
|
Barea-Mendoza JA, Chico-Fernández M, Serviá-Goixart L, Quintana-Díaz M, García-Sáez I, Ballesteros-Sanz MÁ, Iglesias-Santiago A, Molina-Díaz I, González-Robledo J, Fernández-Cuervo A, Pérez-Bárcena J, Llompart-Pou JA. Associated Risk Factors and Impact in Clinical Outcomes of Multiorgan Failure in Patients with TBI. Neurocrit Care 2023; 39:411-418. [PMID: 36869209 DOI: 10.1007/s12028-023-01698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Individual extracerebral organ dysfunction is common after severe traumatic brain injury (TBI) and impacts outcomes. However, multiorgan failure (MOF) has received less attention in patients with isolated TBI. Our objective was to analyze the risk factors associated with the development of MOF and its impact in clinical outcomes in patients with TBI. METHODS This was an observational, prospective, multicenter study using data from a nationwide registry that currently includes 52 intensive care units (ICUs) in Spain (RETRAUCI). Isolated significant TBI was defined as Abbreviated Injury Scale (AIS) ≥ 3 in the head area with no AIS ≥ 3 in any other anatomical area. Multiorgan failure was defined using the Sequential-related Organ Failure Assessment as the alteration of two or more organs with a score of ≥ 3. We analyzed the contribution of MOF to crude and adjusted mortality (age and AIS head) by using logistic regression analysis. A multiple logistic regression analysis was performed to analyze the risk factors associated with the development of MOF in patients with isolated TBI. RESULTS A total of 9790 patients with trauma were admitted to the participating ICUs. Of them, 2964 (30.2%) had AIS head ≥ 3 and no AIS ≥ 3 in any other anatomical area, and these patients constituted the study cohort. Mean age was 54.7 (19.5) years, 76% of patients were men, and ground-level falls were the main mechanism of injury (49.1%). In-hospital mortality was 22.2%. Up to 185 patients with TBI (6.2%) developed MOF during their ICU stay. Crude and adjusted (age and AIS head) mortality was higher in patients who developed MOF (odds ratio 6.28 [95% confidence interval 4.58-8.60] and odds ratio 5.20 [95% confidence interval 3.53-7.45]), respectively. The logistic regression analysis showed that age, hemodynamic instability, the need of packed red blood cells concentrates in the initial 24 h, the severity of brain injury, and the need for invasive neuromonitoring were significantly associated with MOF development. CONCLUSIONS MOF occurred in 6.2% of patients with TBI admitted to the ICU and was associated with increased mortality. MOF was associated with age, hemodynamic instability, the need of packed red blood cells concentrates in the initial 24 h, the severity of brain injury, and the need for invasive neuromonitoring.
Collapse
Affiliation(s)
| | - Mario Chico-Fernández
- UCI Trauma y Emergencias, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Lluís Serviá-Goixart
- Servei de Medicina Intensiva, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, Spain
| | | | - Iker García-Sáez
- Servicio de Medicina Intensiva, Hospital Universitario de Donostia, Donostia, Spain
| | | | - Alberto Iglesias-Santiago
- Servicio de Medicina Intensiva, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, Granada, Spain
| | - Ismael Molina-Díaz
- Servicio de Medicina Intensiva, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Javier González-Robledo
- Servicio de Medicina Intensiva, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Ana Fernández-Cuervo
- Servicio de Medicina Intensiva, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Jon Pérez-Bárcena
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears, Carretera Valldemossa, 79, 07120, Palma, Spain
| | - Juan Antonio Llompart-Pou
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears, Carretera Valldemossa, 79, 07120, Palma, Spain.
| |
Collapse
|