1
|
Stahnke T, Gajda-Deryło B, Jünemann AG, Stachs O, Sterenczak KA, Rejdak R, Beck J, Schütz E, Möller S, Barrantes I, Warsow G, Struckmann S, Fuellen G. Suppression of the TGF-β pathway by a macrolide antibiotic decreases fibrotic responses by ocular fibroblasts in vitro. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200441. [PMID: 33047019 PMCID: PMC7540802 DOI: 10.1098/rsos.200441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/19/2020] [Indexed: 05/12/2023]
Abstract
To elucidate and to inhibit post-surgical fibrotic processes after trabeculectomy in glaucoma therapy, we measured gene expression in a fibrotic cell culture model, based on transforming growth factor TGF-β induction in primary human tenon fibroblasts (hTFs), and used Connectivity Map (CMap) data for drug repositioning. We found that specific molecular mechanisms behind fibrosis are the upregulation of actins, the downregulation of CD34, and the upregulation of inflammatory cytokines such as IL6, IL11 and BMP6. The macrolide antibiotic Josamycin (JM) reverses these molecular mechanisms according to data from the CMap, and we thus tested JM as an inhibitor of fibrosis. JM was first tested for its toxic effects on hTFs, where it showed no influence on cell viability, but inhibited hTF proliferation in a concentration-dependent manner. We then demonstrated that JM suppresses the synthesis of extracellular matrix (ECM) components. In hTFs stimulated with TGF-β1, JM specifically inhibited α-smooth muslce actin expression, suggesting that it inhibits the transformation of fibroblasts into fibrotic myofibroblasts. In addition, a decrease of components of the ECM such as fibronectin, which is involved in in vivo scarring, was observed. We conclude that JM may be a promising candidate for the treatment of fibrosis after glaucoma filtration surgery or drainage device implantation in vivo.
Collapse
Affiliation(s)
- Thomas Stahnke
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Beata Gajda-Deryło
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Anselm G. Jünemann
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | | | - Robert Rejdak
- Department of General Ophthalmology, Medical University in Lublin, Poland
| | - Julia Beck
- Chronix Biomedical GmbH, Göttingen, Germany
| | | | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Israel Barrantes
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Gregor Warsow
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Stephan Struckmann
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
- SHIP-KEF, Institute for Community Medicine, Greifswald University Medical Center, Greifswald, Germany
- Authors for correspondence: Stephan Struckmann e-mail:
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
- Authors for correspondence: Georg Fuellen e-mail:
| |
Collapse
|