1
|
Pawlak A, Małaszczuk M, Dróżdż M, Bury S, Kuczkowski M, Morka K, Cieniuch G, Korzeniowska-Kowal A, Wzorek A, Korzekwa K, Wieliczko A, Cichoń M, Gamian A, Bugla-Płoskońska G. Virulence factors of Salmonella spp. isolated from free-living grass snakes Natrix natrix. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13287. [PMID: 38978351 PMCID: PMC11231047 DOI: 10.1111/1758-2229.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024]
Abstract
Salmonellosis associated with reptiles is a well-researched topic, particularly in China and the United States, but it occurs less frequently in Europe. The growth of the human population and changes in the environment could potentially increase the interaction between humans and free-living reptiles, which are an unidentified source of Salmonella species. In this study, we sought to explore this issue by comparing the microbiota of free-living European grass snakes, scientifically known as Natrix natrix, with that of captive banded water snakes, or Nerodia fasciata. We were able to isolate 27 strains of Salmonella species from cloacal swabs of 59 N. natrix and 3 strains from 10 N. fasciata. Our findings revealed that free-living snakes can carry strains of Salmonella species that are resistant to normal human serum (NHS). In contrast, all the Salmonella species strains isolated from N. fasciata were sensitive to the action of the NHS, further supporting our findings. We identified two serovars from N. natrix: Salmonella enterica subspecies diarizonae and S. enterica subspecies houtenae. Additionally, we identified three different virulotypes (VT) with invA, sipB, prgH, orgA, tolC, iroN, sitC, sifA, sopB, spiA, cdtB and msgA genes, and β-galactosidase synthesised by 23 serovars. The identification of Salmonella species in terms of their VT is a relatively unknown aspect of their pathology. This can be specific to the serovar and pathovar and could be a result of adaptation to a new host or environment.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Michał Małaszczuk
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Mateusz Dróżdż
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Morka
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Gabriela Cieniuch
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Wzorek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kamila Korzekwa
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Clinic of Birds and Exotic Animals, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Mariusz Cichoń
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | |
Collapse
|
2
|
Dec M, Zając M, Puchalski A, Szczepaniak K, Urban-Chmiel R. Pet Reptiles in Poland as a Potential Source of Transmission of Salmonella. Pathogens 2022; 11:1125. [PMID: 36297182 PMCID: PMC9610186 DOI: 10.3390/pathogens11101125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 07/30/2023] Open
Abstract
Reptiles are considered a potential source of Salmonella transmission to humans. The aim of this research was to determine the incidence of Salmonella in pet reptiles in Poland and to examine Salmonella isolates with regard to their biochemical characteristics, serotype, antimicrobial susceptibility, and pathogenic and zoonotic potential. The research material consisted of 67 reptile faeces samples. The taxonomic affiliation of the Salmonella isolates was determined by MALDI-TOF mass spectrometry, biochemical analyses, and serotyping; whole genome sequencing (WGS) analysis was performed on three isolates whose serotype could not be determined by agglutination. The antimicrobial susceptibility of the Salmonella isolates was determined by the broth dilution method, and in the case of some antimicrobials by the disk diffusion method. The pathogenic and zoonotic potential of the identified serotypes was estimated based on available reports and case studies. The presence of Salmonella was confirmed in 71.6% of faecal samples, with the highest incidence (87.1%) recorded for snakes, followed by lizards (77.8%) and turtles (38.9%). All isolates (n = 51) belonged to the species S. enterica, predominantly to subspecies I (66.7%) and IIIb (25.5%). Among these, 25 serotypes were identified, including 10 that had previously been confirmed to cause reptile-associated salmonellosis (RAS). Salmonella isolates were susceptible to all antimicrobial substances used except streptomycin, to which 9.8% of the strains showed resistance. None of the strains contained corresponding resistance genes. The study demonstrates that pet reptiles kept in Poland are a significant reservoir of Salmonella and contribute to knowledge of the characteristics of reptilian Salmonella strains. Due to the risk of salmonellosis, contact with these animals requires special hygiene rules.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Andrzej Puchalski
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Klaudiusz Szczepaniak
- Department of Parasitology and Fish Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| |
Collapse
|
3
|
Dróżdż M, Małaszczuk M, Paluch E, Pawlak A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect Ecol Epidemiol 2021; 11:1975530. [PMID: 34531964 PMCID: PMC8439213 DOI: 10.1080/20008686.2021.1975530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Salmonellosis is a global health problem, affecting approximately 1.3 billion people annually. Most of these cases are related to food contamination. However, although the majority of Salmonella serovars are pathogenic to humans, animals can be asymptomatic carriers of these bacteria. Nowadays, a wide range of animals is present in human households as pets, including reptiles, amphibians, dogs, cats, ornamental birds, and rodents. Pets contaminate the environment of their owners by shedding the bacteria intermittently in their feaces. In consequence, theyare thought to cause salmonellosis through pet-to-human transmission. Each Salmonella serovar has a different zoonotic potential, which is strongly regulated by stress factors such as transportation, crowding, food deprivation, or temperature. In this review, we summarize the latest reports concerning Salmonella-prevalence and distribution in pets as well as the risk factors and means of prevention of human salmonellosis caused by contact with their pets. Our literature analysis (based on PubMed and Google Scholar databases) is limited to the distribution of Salmonella serovars found in commonly owned pet species. We collected the recent results of studies concerning testing for Salmonella spp. in biological samples, indicating their prevalence in pets, with regard to clinical cases of human salmonellosis.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Rna Biochemistry, Berlin, Germany
| | | | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | |
Collapse
|
4
|
Salmonella enterica subsp. arizonae Isolated from a Canine Clinical Case of Prostatitis. Microbiol Resour Announc 2020; 9:9/13/e00118-20. [PMID: 32217678 PMCID: PMC7098901 DOI: 10.1128/mra.00118-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
This is an announcement for the genome sequence of a clinical isolate of Salmonella enterica subsp. arizonae isolated from the urine and prostate of a 6-year-old male Labrador retriever. This is one of the few reports of a Salmonella enterica subsp. arizonae isolate cultured from canine urine. This is an announcement for the genome sequence of a clinical isolate of Salmonella enterica subsp. arizonae isolated from the urine and prostate of a 6-year-old male Labrador retriever. This is one of the few reports of a Salmonella enterica subsp. arizonae isolate cultured from canine urine.
Collapse
|