Popov I, Raenko D, Tchougréeff A, Besley E. Electronic Structure and d-d Spectrum of Metal-Organic Frameworks with Transition-Metal Ions.
THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023;
127:21749-21757. [PMID:
37969926 PMCID:
PMC10641854 DOI:
10.1021/acs.jpcc.3c05025]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
The electronic structure of metal-organic frameworks (MOFs) containing transition metal (TM) ions represents a significant and largely unresolved computational challenge due to limited solutions to the quantitative description of low-energy excitations in open d-shells. These excitations underpin the magnetic and sensing properties of TM MOFs, including the observed remarkable spin-crossover phenomenon. We introduce the effective Hamiltonian of crystal field approach to study the d-d spectrum of MOFs containing TM ions; this is a hybrid QM/QM method based on the separation of crystal structure into d- and s,p-subsystems treated at different levels of theory. We test the method on model frameworks, carbodiimides, and hydrocyanamides and a series of M-MOF-74 (M = Fe, Co, Ni) and compare the computational predictions to experimental data on magnetic properties and Mössbauer spectra.
Collapse