1
|
Suzuki K, Laohakangvalvit T, Sugaya M. Machine-Learning-Based Depression Detection Model from Electroencephalograph (EEG) Data Obtained by Consumer-Grade EEG Device. Brain Sci 2024; 14:1107. [PMID: 39595870 PMCID: PMC11591631 DOI: 10.3390/brainsci14111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: There have been attempts to detect depression using medical-grade electroencephalograph (EEG) data based on a machine learning approach. EEG has garnered interest as a method for assessing brainwaves by attaching electrodes to the scalp to obtain electrical activity in the brain. Recently, machine learning has been applied to the EEG data to detect depression, with encouraging results. Specifically, studies using medical-grade EEG data have shown that depression can be accurately detected. However, there is a need to expand the range of applications by achieving a score with machine learning using simpler consumer-grade brain wave sensors. At present, a sufficient score has not been achieved.; Methods: To improve the score of depression detection, we quantified various EEG indices to train models such as power spectrum, asymmetry, complexity, and functional connectivity. In addition, feature selection was performed to ensure that the model learns only promising EEG indices for depression detection. The feature selection methods were Light Gradient Boosting Machine (LightGBM) feature importance, mutual information, ReliefF and ElasticNet coefficients. The selected EEG indices were learned by the LightGBM model, which is reported to be as accurate as the latest deep learning models. In cross-validation, the independence of test and training data was ensured to avoid excessively calculated score; Results: The results showed that the Macro F1 score was 91.59%, suggesting that a consumer-grade EEG can detect depression. In addition, analysis of the EEG indices selected by feature selection indicated that the Macro F1 score was about 80% for single EEG indices such as differential entropy in the frequency band β and functional connectivity in the left frontal region in the frequency band 1-128 Hz; Conclusions: Although the data were obtained from a consumer-grade EEG, the results suggest that these EEG indices are promising for detection depression.
Collapse
Affiliation(s)
| | - Tipporn Laohakangvalvit
- College of Engineering, Shibaura Institute of Technology, Research Building #14A32, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (M.S.)
| | | |
Collapse
|
2
|
Sarisik E, Popovic D, Keeser D, Khuntia A, Schiltz K, Falkai P, Pogarell O, Koutsouleris N. EEG-based Signatures of Schizophrenia, Depression, and Aberrant Aging: A Supervised Machine Learning Investigation. Schizophr Bull 2024:sbae150. [PMID: 39248267 DOI: 10.1093/schbul/sbae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
BACKGROUND Electroencephalography (EEG) is a noninvasive, cost-effective, and robust tool, which directly measures in vivo neuronal mass activity with high temporal resolution. Combined with state-of-the-art machine learning (ML) techniques, EEG recordings could potentially yield in silico biomarkers of severe mental disorders. HYPOTHESIS Pathological and physiological aging processes influence the electrophysiological signatures of schizophrenia (SCZ) and major depressive disorder (MDD). STUDY DESIGN From a single-center cohort (N = 735, 51.6% male) comprising healthy control individuals (HC, N = 245) and inpatients suffering from SCZ (N = 250) or MDD (N = 240), we acquired resting-state 19 channel-EEG recordings. Using repeated nested cross-validation, support vector machine models were trained to (1) classify patients with SCZ or MDD and HC individuals and (2) predict age in HC individuals. The age model was applied to patient groups to calculate Electrophysiological Age Gap Estimation (EphysAGE) as the difference between predicted and chronological age. The links between EphysAGE, diagnosis, and medication were then further explored. STUDY RESULTS The classification models robustly discriminated SCZ from HC (balanced accuracy, BAC = 72.7%, P < .001), MDD from HC (BAC = 67.0%, P < .001), and SCZ from MDD individuals (BAC = 63.2%, P < .001). Notably, central alpha (8-11 Hz) power decrease was the most consistently predictive feature for SCZ and MDD. Higher EphysAGE was associated with an increased likelihood of being misclassified as SCZ in HC and MDD (ρHC = 0.23, P < .001; ρMDD = 0.17, P = .01). CONCLUSIONS ML models can extract electrophysiological signatures of MDD and SCZ for potential clinical use. However, the impact of aging processes on diagnostic separability calls for timely application of such models, possibly in early recognition settings.
Collapse
Affiliation(s)
- Elif Sarisik
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - David Popovic
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Center for Neurosciences, LMU Munich, Munich, Germany
| | - Adyasha Khuntia
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Kolja Schiltz
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Peter Falkai
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany
| | - Oliver Pogarell
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nikolaos Koutsouleris
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany
- Munich Center for Neurosciences, LMU Munich, Munich, Germany
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|
3
|
Metin SZ, Uyulan Ç, Farhad S, Ergüzel TT, Türk Ö, Metin B, Çerezci Ö, Tarhan N. Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy. Clin EEG Neurosci 2024:15500594241273181. [PMID: 39251228 DOI: 10.1177/15500594241273181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention.
Collapse
Affiliation(s)
| | - Çağlar Uyulan
- Department of Mechanical Engineering, Katip Çelebi University, İzmir, Turkey
| | - Shams Farhad
- Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | - Türker Tekin Ergüzel
- Department of Software Engineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey
| | - Ömer Türk
- Department of Computer Technologies, Artuklu University, Mardin, Turkey
| | - Barış Metin
- Neurology Department, Medical Faculty, Uskudar University, Istanbul, Turkey
| | - Önder Çerezci
- Department of Physioterapy and Rehabilitation, Faculty of Health SciencesUskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| |
Collapse
|
4
|
Mirjebreili SM, Shalbaf R, Shalbaf A. Prediction of treatment response in major depressive disorder using a hybrid of convolutional recurrent deep neural networks and effective connectivity based on EEG signal. Phys Eng Sci Med 2024; 47:633-642. [PMID: 38358619 DOI: 10.1007/s13246-024-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
In this study, we have developed a novel method based on deep learning and brain effective connectivity to classify responders and non-responders to selective serotonin reuptake inhibitors (SSRIs) antidepressants in major depressive disorder (MDD) patients prior to the treatment using EEG signal. The effective connectivity of 30 MDD patients was determined by analyzing their pretreatment EEG signals, which were then concatenated into delta, theta, alpha, and beta bands and transformed into images. Using these images, we then fine tuned a hybrid Convolutional Neural Network that is enhanced with bidirectional Long Short-Term Memory cells based on transfer learning. The Inception-v3, ResNet18, DenseNet121, and EfficientNet-B0 models are implemented as base models. Finally, the models are followed by BiLSTM and dense layers in order to classify responders and non-responders to SSRI treatment. Results showed that the EfficiencyNet-B0 has the highest accuracy of 98.33, followed by DensNet121, ResNet18 and Inception-v3. Therefore, a new method was proposed in this study that uses deep learning models to extract both spatial and temporal features automatically, which will improve classification results. The proposed method provides accurate identification of MDD patients who are responding, thereby reducing the cost of medical facilities and patient care.
Collapse
Affiliation(s)
| | - Reza Shalbaf
- Institute for Cognitive Science Studies, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Tigga NP, Garg S. Efficacy of novel attention-based gated recurrent units transformer for depression detection using electroencephalogram signals. Health Inf Sci Syst 2023; 11:1. [PMID: 36590874 PMCID: PMC9800680 DOI: 10.1007/s13755-022-00205-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose Depression is a global challenge causing psychological and intellectual problems that require efficient diagnosis. Electroencephalogram (EEG) signals represent the functional state of the human brain and can help build an accurate and viable technique for the early prediction and treatment of depression. Methods An attention-based gated recurrent units transformer (AttGRUT) time-series model is proposed to efficiently identify EEG perturbations in depressive patients. Statistical, spectral and wavelet features were first extracted from the 60-channel EEG signal data. Then, two feature selection techniques, recursive feature elimination and the Boruta algorithm, both with Shapley additive explanations, were utilised for selecting essential features. Results The proposed model outperformed the two baseline and two hybrid time-series models-long short-term memory (LSTM), gated recurrent units (GRU), convolutional neural network-LSTM (CNN-LSTM), and CNN-GRU-achieving an accuracy of up to 98.67%. Feature selection considerably increased the performance across all time-series models. Conclusion Based on the obtained results, novel feature selection greatly affected the results of the baseline and hybrid time-series models. The proposed AttGRUT can be implemented and tested in other domains by using different modalities for prediction. Supplementary Information The online version contains supplementary material available at 10.1007/s13755-022-00205-8.
Collapse
Affiliation(s)
| | - Shruti Garg
- Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
6
|
Morita M, Otsu R, Kawasaki M. Brainwave activities reflecting depressed mood: a pilot study. Sci Rep 2023; 13:14036. [PMID: 37666858 PMCID: PMC10477265 DOI: 10.1038/s41598-023-40582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
Early diagnosis and treatment of depression are desirable but currently difficult due to a lack of established biomarkers. Although biomarkers for depression based on electroencephalogram (EEG) data have long been explored, most existing methods are thought to capture cognitive decline caused by depression and are unsuccessful in detecting signs of depression. Here we report that some brainwave activities involving phase resetting reflect the depressed mood at the time, which can be easily monitored by measuring the resting EEG with eyes closed for 1 min with a few electrodes. We instructed 10 participants (nine healthy and one diagnosed with depression, aged 18-34) to record their EEG for 14-26 days. We found that indicators of depressed mood were correlated with the occurrence frequency of EEG phase resetting. For most participants, the correlation coefficients swung systematically between large positive and large negative values with respect to EEG frequency; however, the frequencies at which they were maximum or minimum differed among participants. Although this study is in the pilot phase and needs further experimentation, the results are expected to lead to innovative biomarkers for early detection of depression and may contribute to a better understanding and treatment of depression.
Collapse
Affiliation(s)
- Masahiko Morita
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Ryusei Otsu
- Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Kawasaki
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
7
|
Chakraborty A, Mitra S, Bhattacharjee M, De D, Pal AJ. Determining human-coronavirus protein-protein interaction using machine intelligence. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 18:100228. [PMID: 37056696 PMCID: PMC10077817 DOI: 10.1016/j.medntd.2023.100228] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) virus spread the novel CoronaVirus -19 (nCoV-19) pandemic, resulting in millions of fatalities globally. Recent research demonstrated that the Protein-Protein Interaction (PPI) between SARS-CoV-2 and human proteins is accountable for viral pathogenesis. However, many of these PPIs are poorly understood and unexplored, necessitating a more in-depth investigation to find latent yet critical interactions. This article elucidates the host-viral PPI through Machine Learning (ML) lenses and validates the biological significance of the same using web-based tools. ML classifiers are designed based on comprehensive datasets with five sequence-based features of human proteins, namely Amino Acid Composition, Pseudo Amino Acid Composition, Conjoint Triad, Dipeptide Composition, and Normalized Auto Correlation. A majority voting rule-based ensemble method composed of the Random Forest Model (RFM), AdaBoost, and Bagging technique is proposed that delivers encouraging statistical performance compared to other models employed in this work. The proposed ensemble model predicted a total of 111 possible SARS-CoV-2 human target proteins with a high likelihood factor ≥70%, validated by utilizing Gene Ontology (GO) and KEGG pathway enrichment analysis. Consequently, this research can aid in a deeper understanding of the molecular mechanisms underlying viral pathogenesis and provide clues for developing more efficient anti-COVID medications.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Bachelor of Computer Application Department, The Heritage Academy, Kolkata, India
| | - Sajal Mitra
- Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata, India
| | | | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| | | |
Collapse
|
8
|
Ksibi A, Zakariah M, Menzli LJ, Saidani O, Almuqren L, Hanafieh RAM. Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques. Diagnostics (Basel) 2023; 13:1779. [PMID: 37238263 PMCID: PMC10217709 DOI: 10.3390/diagnostics13101779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The growth of biomedical engineering has made depression diagnosis via electroencephalography (EEG) a trendy issue. The two significant challenges to this application are EEG signals' complexity and non-stationarity. Additionally, the effects caused by individual variances may hamper the generalization of detection systems. Given the association between EEG signals and particular demographics, such as gender and age, and the influences of these demographic characteristics on the incidence of depression, it would be preferable to include demographic factors during EEG modeling and depression detection. The main objective of this work is to develop an algorithm that can recognize depression patterns by studying EEG data. Following a multiband analysis of such signals, machine learning and deep learning techniques were used to detect depression patients automatically. EEG signal data are collected from the multi-modal open dataset MODMA and employed in studying mental diseases. The EEG dataset contains information from a traditional 128-electrode elastic cap and a cutting-edge wearable 3-electrode EEG collector for widespread applications. In this project, resting EEG readings of 128 channels are considered. According to CNN, training with 25 epoch iterations had a 97% accuracy rate. The patient's status has to be divided into two basic categories: major depressive disorder (MDD) and healthy control. Additional MDD include the following six classes: obsessive-compulsive disorders, addiction disorders, conditions brought on by trauma and stress, mood disorders, schizophrenia, and the anxiety disorders discussed in this paper are a few examples of mental illnesses. According to the study, a natural combination of EEG signals and demographic data is promising for the diagnosis of depression.
Collapse
Affiliation(s)
- Amel Ksibi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed Zakariah
- Department of Computer Science, College of Computer and Information Sciences, Riyadh 11442, Saudi Arabia
| | - Leila Jamel Menzli
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Oumaima Saidani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Latifah Almuqren
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rosy Awny Mohamed Hanafieh
- Department of Computer Science, College of Computing in Al-Qunfudah, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| |
Collapse
|
9
|
Yang L, Wei X, Liu F, Zhu X, Zhou F. Automatic feature learning model combining functional connectivity network and graph regularization for depression detection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Mattiev J, Sajovic J, Drevenšek G, Rogelj P. Assessment of Model Accuracy in Eyes Open and Closed EEG Data: Effect of Data Pre-Processing and Validation Methods. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010042. [PMID: 36671614 PMCID: PMC9854523 DOI: 10.3390/bioengineering10010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Eyes open and eyes closed data is often used to validate novel human brain activity classification methods. The cross-validation of models trained on minimally preprocessed data is frequently utilized, regardless of electroencephalography data comprised of data resulting from muscle activity and environmental noise, affecting classification accuracy. Moreover, electroencephalography data of a single subject is often divided into smaller parts, due to limited availability of large datasets. The most frequently used method for model validation is cross-validation, even though the results may be affected by overfitting to the specifics of brain activity of limited subjects. To test the effects of preprocessing and classifier validation on classification accuracy, we tested fourteen classification algorithms implemented in WEKA and MATLAB, tested on comprehensively and simply preprocessed electroencephalography data. Hold-out and cross-validation were used to compare the classification accuracy of eyes open and closed data. The data of 50 subjects, with four minutes of data with eyes closed and open each was used. The algorithms trained on simply preprocessed data were superior to the ones trained on comprehensively preprocessed data in cross-validation testing. The reverse was true when hold-out accuracy was examined. Significant increases in hold-out accuracy were observed if the data of different subjects was not strictly separated between the test and training datasets, showing the presence of overfitting. The results show that comprehensive data preprocessing can be advantageous for subject invariant classification, while higher subject-specific accuracy can be attained with simple preprocessing. Researchers should thus state the final intended use of their classifier.
Collapse
Affiliation(s)
- Jamolbek Mattiev
- Department of Information Technologies, Urgench State University, Khamid Alimdjan 14, Urgench 220100, Uzbekistan
- Correspondence:
| | - Jakob Sajovic
- Department of Orthodontics, University Medical Centre Ljubljana, Hrvatski trg 6, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Gorazd Drevenšek
- Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| |
Collapse
|
11
|
Margarette Sanchez M, Borden L, Alam N, Noroozi A, Ravan M, Flor-Henry P, Hasey G. A Machine Learning Algorithm to Discriminating Between Bipolar and Major Depressive Disorders Based on Resting EEG Data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2635-2638. [PMID: 36085796 DOI: 10.1109/embc48229.2022.9871453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Distinguishing major depressive disorder (MDD) from bipolar disorder (BD) is a crucial clinical challenge due to the lack of known biomarkers. Conventional methods of diagnosis rest exclusively on symptomatic presentation, and personal and family history. As a result, BD-depressed episode (BD-DE) is often misdiagnosed as MDD, and inappropriate therapy is given. Electroencephalography (EEG) has been widely studied as a potential source of biomarkers to differentiate these disorders. Previous attempts using machine learning (ML) methods have delivered insufficient sensitivity and specificity for clinical use, likely as a consequence of the small training set size, and inadequate ML methodology. We hope to overcome these limitations by employing a training dataset of resting-state EEG from 71 MDD and 71 BD patients. We introduce a robust 3 steps ML technique: 1) a multi-step preprocessing method is used to improve the quality of the EEG signal 2) symbolic transfer entropy (STE), which is an effective connectivity measure, is applied to the resultant EEG signals 3) the ML algorithm uses the extracted STE features to distinguish MDD from BD patients. Clinical Relevance--- The accuracy of our algorithm, derived from a large sample of patients, suggests that this method may hold significant promise as a clinical tool. The proposed method delivered total accuracy, sensitivity, and specificity of 84.9%, 83.4%, and 87.1%, respectively.
Collapse
|
12
|
Kato R, Balasubramani PP, Ramanathan D, Mishra J. Utility of Cognitive Neural Features for Predicting Mental Health Behaviors. SENSORS (BASEL, SWITZERLAND) 2022; 22:3116. [PMID: 35590804 PMCID: PMC9100783 DOI: 10.3390/s22093116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Cognitive dysfunction underlies common mental health behavioral symptoms including depression, anxiety, inattention, and hyperactivity. In this study of 97 healthy adults, we aimed to classify healthy vs. mild-to-moderate self-reported symptoms of each disorder using cognitive neural markers measured with an electroencephalography (EEG). We analyzed source-reconstructed EEG data for event-related spectral perturbations in the theta, alpha, and beta frequency bands in five tasks, a selective attention and response inhibition task, a visuospatial working memory task, a Flanker interference processing task, and an emotion interference task. From the cortical source activation features, we derived augmented features involving co-activations between any two sources. Logistic regression on the augmented feature set, but not the original feature set, predicted the presence of psychiatric symptoms, particularly for anxiety and inattention with >80% sensitivity and specificity. We also computed current flow closeness and betweenness centralities to identify the “hub” source signal predictors. We found that the Flanker interference processing task was the most useful for assessing the connectivity hubs in general, followed by the inhibitory control go-nogo paradigm. Overall, these interpretable machine learning analyses suggest that EEG biomarkers collected on a rapid suite of cognitive assessments may have utility in classifying diverse self-reported mental health symptoms.
Collapse
Affiliation(s)
- Ryosuke Kato
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, CA 92037, USA; (R.K.); (D.R.); (J.M.)
| | | | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, CA 92037, USA; (R.K.); (D.R.); (J.M.)
- Department of Mental Health, VA San Diego Medical Center, San Diego, CA 92037, USA
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, CA 92037, USA; (R.K.); (D.R.); (J.M.)
| |
Collapse
|