1
|
Performance Comparison of Different Approaches in Genotyping MHC-DRB: The Contrast between Single-Locus and Multi-Locus Species. Animals (Basel) 2022; 12:ani12182452. [PMID: 36139311 PMCID: PMC9495155 DOI: 10.3390/ani12182452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Major histocompatibility complex (MHC) genes are widely recognised as valuable markers for wildlife genetic studies given their extreme polymorphism and functional importance in fitness-related traits. Newly developed genotyping methods, which rely on the use of next-generation sequencing (NGS), are gradually replacing traditional cloning and Sanger sequencing methods in MHC genotyping studies. Allele calling in NGS methods remains challenging due to extreme polymorphism and locus multiplication in the MHC coupled with allele amplification bias and the generation of artificial sequences. In this study, we compared the performance of molecular cloning with Illumina and Ion Torrent NGS sequencing in MHC-DRB genotyping of single-locus species (roe deer) and species with multiple DRB loci (red deer) in an attempt to adopt a reliable and straightforward method that does not require complex bioinformatic analyses. Our results show that all methods work similarly well in roe deer, but we demonstrate non-consistency in results across methods in red deer. With Illumina sequencing, we detected a maximum number of alleles in 10 red deer individuals (42), while other methods were somewhat less accurate as they scored 69–81% of alleles detected with Illumina sequencing.
Collapse
|
2
|
Pérez-González J, Carranza J, Martínez R, Benítez-Medina JM. Host Genetic Diversity and Infectious Diseases. Focus on Wild Boar, Red Deer and Tuberculosis. Animals (Basel) 2021; 11:1630. [PMID: 34072907 PMCID: PMC8229303 DOI: 10.3390/ani11061630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Host genetic diversity tends to limit disease spread in nature and buffers populations against epidemics. Genetic diversity in wildlife is expected to receive increasing attention in contexts related to disease transmission and human health. Ungulates such as wild boar (Sus scrofa) and red deer (Cervus elaphus) are important zoonotic hosts that can be precursors to disease emergence and spread in humans. Tuberculosis is a zoonotic disease with relevant consequences and can present high prevalence in wild boar and red deer populations. Here, we review studies on the genetic diversity of ungulates and determine to what extent these studies consider its importance on the spread of disease. This assessment also focused on wild boar, red deer, and tuberculosis. We found a disconnection between studies treating genetic diversity and those dealing with infectious diseases. Contrarily, genetic diversity studies in ungulates are mainly concerned with conservation. Despite the existing disconnection between studies on genetic diversity and studies on disease emergence and spread, the knowledge gathered in each discipline can be applied to the other. The bidirectional applications are illustrated in wild boar and red deer populations from Spain, where TB is an important threat for wildlife, livestock, and humans.
Collapse
Affiliation(s)
- Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Córdoba, Spain;
| | - Remigio Martínez
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| | - José Manuel Benítez-Medina
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| |
Collapse
|
3
|
Ivy-Israel NMD, Moore CE, Schwartz TS, Steury TD, Zohdy S, Newbolt CH, Ditchkoff SS. Association between sexually selected traits and allelic distance in two unlinked MHC II loci in white-tailed deer (Odocoileus virginianus). Evol Ecol 2021. [DOI: 10.1007/s10682-021-10108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Characterization of two MHC II genes (DOB, DRB) in white-tailed deer (Odocoileus virginianus). BMC Genet 2020; 21:83. [PMID: 32727360 PMCID: PMC7392685 DOI: 10.1186/s12863-020-00889-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is responsible for detecting and addressing foreign pathogens inside the body. While the general structure of MHC genes is relatively well conserved among mammalian species, it is notably different among ruminants due to a chromosomal inversion that splits MHC type II genes into two subregions (IIa, IIb). Recombination rates are reportedly high between these subregions, and a lack of linkage has been documented in domestic ruminants. However, no study has yet examined the degree of linkage between these subregions in a wild ruminant. The white-tailed deer (Odocoileus virginianus), a popular ruminant of the Cervidae family, is habitually plagued by pathogens in its natural environment (e.g. Haemonchus contortus, Elaeophora). Due to the association between MHC haplotypes and disease susceptibility, a deeper understanding of MHC polymorphism and linkage between MHC genes can further aid in this species' successful management. We sequenced MHC-DRB exon 2 (IIa) and MHC-DOB exon 2 (IIb) on the MiSeq platform from an enclosed white-tailed deer population located in Alabama. RESULTS We identified 12 new MHC-DRB alleles, and resampled 7 alleles, which along with other published alleles brings the total number of documented alleles in white-tailed deer to 30 for MHC-DRB exon 2. The first examination of MHC-DOB in white-tailed deer found significantly less polymorphism (11 alleles), as was expected of a non-classical MHC gene. While MHC-DRB was found to be under positive, diversifying selection, MHC-DOB was found to be under purifying selection for white-tailed deer. We found no significant linkage disequilibrium between MHC-DRB and MHC-DOB, suggesting that these loci are unlikely to be closely linked. CONCLUSIONS Overall, this study identified 12 new MHC-DRB exon 2 alleles and characterized a new, non-classical, MHC II gene (MHC-DOB) for white-tailed deer. We also found a lack of significant linkage between these two loci, which supports previous findings of a chromosomal inversion within the MHC type II gene region in ruminants, and suggests that white-tailed deer may have a recombination hotspot between these MHC regions similar to that found for Bos taurus.
Collapse
|
5
|
Pérez-Espona S, Goodall-Copestake WP, Savirina A, Bobovikova J, Molina-Rubio C, Pérez-Barbería FJ. First assessment of MHC diversity in wild Scottish red deer populations. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Molecular polymorphism of MHC-DRB gene and genetic diversity analysis of captive forest musk deer (Moschus berezovskii). BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Ebani VV, Rocchigiani G, Bertelloni F, Nardoni S, Leoni A, Nicoloso S, Mancianti F. Molecular survey on the presence of zoonotic arthropod-borne pathogens in wild red deer (Cervus elaphus). Comp Immunol Microbiol Infect Dis 2016; 47:77-80. [PMID: 27477510 DOI: 10.1016/j.cimid.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/08/2016] [Accepted: 06/21/2016] [Indexed: 01/30/2023]
Abstract
To estimate the prevalence of some zoonotic tick-borne pathogens in red deer (Cervus elaphus) living in Italian areas with high risk of arthropod exposure, blood samples from 60 red deer were tested by PCR for A. phagocytophilum, Borrelia burgdorferi s.l., Coxiella burnetii, Francisella tularensis, and piroplasms. Thirty-four (56.67%) animals resulted positive for one or more pathogens. In particular, 24 (40%) red deer were positive for A. phagocytophilum, 16 (26.67%) for Babesia divergens, 6 (10%) for C. burnetii, 2 (3.33%) for B. burgdorferi s.l. No positive reaction was observed for F. tularensis. Thirteen (21.67%) animals resulted co-infected by two or three pathogens. Red deer is confirmed as competent reservoir of A. phagocytophilum and B. divergens, but not of B. burgdorferi. This is the first report of C. burnetii-positive red deer in central Italy. Hunters may be at risk of infection both through infected ticks and during the infected cervids carcasses dressing.
Collapse
Affiliation(s)
| | - Guido Rocchigiani
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Simona Nardoni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Alessandro Leoni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Sandro Nicoloso
- D.R.E. Am. Italia Soc. Coop. Agr. For., Via Garibaldi 3, 52015 Pratovecchio, Arezzo, Italy
| | - Francesca Mancianti
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| |
Collapse
|
8
|
Vanpé C, Debeffe L, Galan M, Hewison AJM, Gaillard JM, Gilot-Fromont E, Morellet N, Verheyden H, Cosson JF, Cargnelutti B, Merlet J, Quéméré E. Immune gene variability influences roe deer natal dispersal. OIKOS 2016. [DOI: 10.1111/oik.02904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cécile Vanpé
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), CNRS UMR5558; Université Claude Bernard Lyon 1; 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex France
| | - Lucie Debeffe
- CEFS; Univ. de Toulouse; INRA Castanet-Tolosan France
| | - Maxime Galan
- CEFS; Univ. de Toulouse; INRA Castanet-Tolosan France
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); Campus International de Baillarguet Montferrier-sur-Lez Cedex France
| | | | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), CNRS UMR5558; Université Claude Bernard Lyon 1; 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex France
| | - Emmanuelle Gilot-Fromont
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), CNRS UMR5558; Université Claude Bernard Lyon 1; 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex France
- VetAgro-sup; Univ. Lyon 1; Marcy l'Etoile France
| | | | | | - Jean-François Cosson
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); Campus International de Baillarguet Montferrier-sur-Lez Cedex France
| | | | - Joël Merlet
- CEFS; Univ. de Toulouse; INRA Castanet-Tolosan France
| | - Erwan Quéméré
- CEFS; Univ. de Toulouse; INRA Castanet-Tolosan France
| |
Collapse
|
9
|
Blanchong JA, Robinson SJ, Samuel MD, Foster JT. Application of genetics and genomics to wildlife epidemiology. J Wildl Manage 2016. [DOI: 10.1002/jwmg.1064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie A. Blanchong
- Department of Natural Resource Ecology and Management; Iowa State University; 339 Science II Ames IA 50011 USA
| | | | - Michael D. Samuel
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; 204 Russell Labs, 1630 Linden Dr. Madison WI 53706 USA
| | - Jeffrey T. Foster
- Department of Molecular, Cellular and Biomedical Sciences; University of New Hampshire; 291 Rudman Hall Durham NH 03824 USA
| |
Collapse
|
10
|
Buczek M, Okarma H, Demiaszkiewicz AW, Radwan J. MHC, parasites and antler development in red deer: no support for the Hamilton & Zuk hypothesis. J Evol Biol 2016; 29:617-32. [PMID: 26687843 DOI: 10.1111/jeb.12811] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
The Hamilton-Zuk hypothesis proposes that the genetic benefits of preferences for elaborated secondary sexual traits have their origins in the arms race between hosts and parasites, which maintains genetic variance in parasite resistance. Infection, in turn, can be reflected in the expression of costly sexual ornaments. However, the link between immune genes, infection and the expression of secondary sexual traits has rarely been investigated. Here, we explored whether the presence and identity of functional variants (supertypes) of the highly polymorphic major histocompatibility complex (MHC), which is responsible for the recognition of parasites, predict the load of lung and gut parasites and antler development in the red deer (Cervus elaphus). While we found MHC supertypes to be associated with infection by a number of parasite species, including debilitating lung nematodes, we did not find support for the Hamilton-Zuk hypothesis. On the contrary, we found that lung nematode load was positively associated with antler development. We also found that the supertypes that were associated with resistance to certain parasites at the same time cause susceptibility to others. Such trade-offs may undermine the potential genetic benefits of mate choice for resistant partners.
Collapse
Affiliation(s)
- M Buczek
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - H Okarma
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | | | - J Radwan
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland.,Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
The role of wildlife in bluetongue virus maintenance in Europe: lessons learned after the natural infection in Spain. Virus Res 2014; 182:50-8. [PMID: 24394295 DOI: 10.1016/j.virusres.2013.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
Abstract
Bluetongue (BT) is a re-emergent vector-borne viral disease of domestic and wild ruminants caused by bluetongue virus (BTV), a member of the genus Orbivirus. A complex multi-host, multi-vector and multi-pathogen (26 serotypes) transmission and maintenance network has recently emerged in Europe, and wild ruminants are regarded as an important node in this network. This review analyses the reservoir role of wild ruminants in Europe, identifying gaps in knowledge and proposing actions. Wild ruminant species are indicators of BTV circulation. Excepting the mouflon (Ovis aries musimon), European wild ungulates do not develop clinical disease. Diagnostic techniques used in wildlife do not differ from those used in domestic ruminants provided they are validated. Demographic, behavioural and physiological traits of wild hosts modulate their relationship with BTV vectors and with the virus itself. While BTV has been eradicated from central and northern Europe, it is still circulating in the Mediterranean Basin. We propose that currently two BTV cycles coexist in certain regions of the Mediterranean Basin, a wild one largely driven by deer of the subfamily Cervinae and a domestic one. These are probably linked through shared Culicoides vectors of several species. We suggest that wildlife might be contributing to this situation through vector maintenance and virus maintenance. Additionally, differences in temperature and other environmental factors add complexity to the Mediterranean habitats as compared to central and northern European ones. Intervention options in wildlife populations are limited. There is a need to know the role of wildlife in maintaining Culicoides populations, and to know which Culicoides species mediate the wildlife-livestock-BTV transmission events. There is also a clear need to study more in depth the links between Cervinae deer densities, environmental factors and BTV maintenance. Regarding disease control, we suggest that research efforts should be focused on wildlife population and wildlife disease monitoring.
Collapse
|
12
|
Queiros J, Vicente J, Boadella M, Gortázar C, Alves PC. The impact of management practices and past demographic history on the genetic diversity of red deer (Cervus elaphus): an assessment of population and individual fitness. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- João Queiros
- SaBio IREC (CSIC-UCLM-JCCM); Ronda de Toledo s/n Ciudad Real 13071 Spain
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO); InBio Laboratório Associado; Universidade do Porto; Campus Agrário de Vairão R. Monte-Crasto 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto (FCUP); 4099-002 Porto Portugal
| | - Joaquín Vicente
- SaBio IREC (CSIC-UCLM-JCCM); Ronda de Toledo s/n Ciudad Real 13071 Spain
| | - Mariana Boadella
- SaBio IREC (CSIC-UCLM-JCCM); Ronda de Toledo s/n Ciudad Real 13071 Spain
| | - Christian Gortázar
- SaBio IREC (CSIC-UCLM-JCCM); Ronda de Toledo s/n Ciudad Real 13071 Spain
| | - Paulo Célio Alves
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO); InBio Laboratório Associado; Universidade do Porto; Campus Agrário de Vairão R. Monte-Crasto 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto (FCUP); 4099-002 Porto Portugal
- Wildlife Biology Program; University of Montana; Missoula MT 59812 USA
| |
Collapse
|
13
|
McClelland EK, Ming TJ, Tabata A, Kaukinen KH, Beacham TD, Withler RE, Miller KM. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka). Mol Ecol 2013; 22:4783-800. [DOI: 10.1111/mec.12424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Erin K. McClelland
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Tobi J. Ming
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Amy Tabata
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Karia H. Kaukinen
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Terry D. Beacham
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Ruth E. Withler
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Kristina M. Miller
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| |
Collapse
|
14
|
Ruiz-Fons F, Acevedo P, Sobrino R, Vicente J, Fierro Y, Fernández-de-Mera IG. Sex-biased differences in the effects of host individual, host population and environmental traits driving tick parasitism in red deer. Front Cell Infect Microbiol 2013; 3:23. [PMID: 23819112 PMCID: PMC3694362 DOI: 10.3389/fcimb.2013.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/09/2013] [Indexed: 11/13/2022] Open
Abstract
The interactions between host individual, host population, and environmental factors modulate parasite abundance in a given host population. Since adult exophilic ticks are highly aggregated in red deer (Cervus elaphus) and this ungulate exhibits significant sexual size dimorphism, life history traits and segregation, we hypothesized that tick parasitism on males and hinds would be differentially influenced by each of these factors. To test the hypothesis, ticks from 306 red deer-182 males and 124 females-were collected during 7 years in a red deer population in south-central Spain. By using generalized linear models, with a negative binomial error distribution and a logarithmic link function, we modeled tick abundance on deer with 20 potential predictors. Three models were developed: one for red deer males, another for hinds, and one combining data for males and females and including "sex" as factor. Our rationale was that if tick burdens on males and hinds relate to the explanatory factors in a differential way, it is not possible to precisely and accurately predict the tick burden on one sex using the model fitted on the other sex, or with the model that combines data from both sexes. Our results showed that deer males were the primary target for ticks, the weight of each factor differed between sexes, and each sex specific model was not able to accurately predict burdens on the animals of the other sex. That is, results support for sex-biased differences. The higher weight of host individual and population factors in the model for males show that intrinsic deer factors more strongly explain tick burden than environmental host-seeking tick abundance. In contrast, environmental variables predominated in the models explaining tick burdens in hinds.
Collapse
Affiliation(s)
- Francisco Ruiz-Fons
- Animal Health and Biotechnology Group (SaBio), Spanish National Wildlife Research Institute (IREC CSIC-UCLM-JCCM) Ciudad Real, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Cavallero S, Marco I, Lavín S, D'Amelio S, López-Olvera JR. Polymorphisms at MHC class II DRB1 exon 2 locus in Pyrenean chamois (Rupicapra pyrenaica pyrenaica). INFECTION GENETICS AND EVOLUTION 2012; 12:1020-6. [PMID: 22425496 DOI: 10.1016/j.meegid.2012.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/19/2012] [Accepted: 02/28/2012] [Indexed: 11/12/2022]
Abstract
Chamois (Rupicapra spp.) are mountain ungulates from Southern and Central Europe and the Near East. A newly reported border disease virus (BDV) has affected the easternmost populations of Pyrenean chamois, leading to a dramatic population decrease that may drive to genetic variability loss. The Major Histocompatibility Complex (MHC) is a sensitive marker for genetic variation of populations: polymorphism on the MHC genes is affected both by pathogens and population dynamics and it is ecologically relevant, as depending on host-pathogen relationships and life history features. In the present study MHC class II DRB1 exon 2 variation was investigated in 81 Pyrenean chamois (Rupicapra pyrenaica pyrenaica) belonging to four populations. Haplotype analysis, population genetics statistics and network analysis were carried out, in order to analyze variability, phylogeography and genealogy, and the effects of geography and demographic trend. Twenty-nine haplotypes were identified, 26 of them newly described, with high Gene diversity (Gd). The variability observed in the easternmost populations of Pyrenean chamois showed a higher genetic diversity than that previously reported for other populations of Pyrenean and Cantabrian chamois (Rupicapra pyrenaica parva). The most frequent allele was RupyDRB*15, previously undetected, which seems to play a significant role in genotyping the variability, suggesting a possible effect of positive selection.
Collapse
Affiliation(s)
- Serena Cavallero
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
16
|
Lee CY, Qin J, Munyard KA, Siva Subramaniam N, Wetherall JD, Stear MJ, Groth DM. Conserved haplotype blocks within the sheep MHC and low SNP heterozygosity in the Class IIa subregion. Anim Genet 2011; 43:429-37. [PMID: 22497756 DOI: 10.1111/j.1365-2052.2011.02268.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes single-nucleotide polymorphisms (SNPs) in the sheep major histocompatibility complex (MHC) class II and class III regions and provides insights into the internal structure of this important genomic complex. MHC haplotypes were deduced from sheep family trios based on genotypes from 20 novel SNPs representative of the class II region and 10 previously described SNPs spanning the class III region. All 30 SNPs exhibited Hardy-Weinberg proportions in the sheep population studied. Recombination within an extended sire haplotype was observed within the class II region for 4 of 20 sheep chromosomes, thereby supporting the presence of separated IIa and IIb subregions similar to those present in cattle. SNP heterozygosity varied across the class II and III regions. One segment of the class IIa subregion manifested very low heterozygosity for several SNPs spanning approximately 120 Kbp. This feature corresponds to a subregion within the human MHC class II region previously described as a 'SNP desert' because of its paucity of SNPs. Linkage disequilibrium (LD) was reduced at the junction separating the putative class IIb and IIa subregions and also between the class IIa and the class III subregions. The latter observation is consistent with either an unmapped physical separation at this location or more likely a boundary characterized by more frequent recombination between two conserved subregions, each manifesting high within-block LD. These results identify internal blocks of loci in the sheep MHC, within which recombination is relatively rare.
Collapse
Affiliation(s)
- C Y Lee
- Western Australian Biomedical Research Institute, School of Biomedical Sciences, Curtin University, Perth, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
|