1
|
Gambushe SM, Zishiri OT, El Zowalaty ME. Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infect Drug Resist 2022; 15:4645-4673. [PMID: 36039321 PMCID: PMC9420067 DOI: 10.2147/idr.s365269] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne and water-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans and may cause serious morbidity and large outbreaks worldwide. People with bloody diarrhea have an increased risk of developing serious complications such as acute renal failure and neurological damage. The hemolytic-uremic syndrome (HUS) is a serious condition, and up to 50% of HUS patients can develop long-term renal dysfunction or blood pressure-related complications. Children aged two to six years have an increased risk of developing HUS. Clinical enteropathogenic Escherichia coli (EPEC) infections show fever, vomiting, and diarrhea. The EPEC reservoir is unknown but is suggested to be an asymptomatic or symptomatic child or an asymptomatic adult carrier. Spreading is often through the fecal-oral route. The prevalence of EPEC in infants is low, and EPEC is highly contagious in children. EPEC disease in children tends to be clinically more severe than other diarrheal infections. Some children experience persistent diarrhea that lasts for more than 14 days. Enterotoxigenic Escherichia coli (ETEC) strains are a compelling cause of the problem of diarrheal disease. ETEC strains are a global concern as the bacteria are the leading cause of acute watery diarrhea in children and the leading cause of traveler’s diarrhea. It is contagious to children and can cause chronic diarrhea that can affect the development and well-being of children. Infections with diarrheagenic E. coli are more common in African countries. Antimicrobial agents should be avoided in the acute phase of the disease since studies showed that antimicrobial agents may increase the risk of HUS in children. The South African National Veterinary Surveillance and Monitoring Programme for Resistance to Antimicrobial Drugs has reported increased antimicrobial resistance in E. coli. Pathogenic bacterial strains have developed resistance to a variety of antimicrobial agents due to antimicrobial misuse. The induced heavy metal tolerance may also enhance antimicrobial resistance. The prevalence of antimicrobial resistance depends on the type of the antimicrobial agent, bacterial strain, dose, time, and mode of administration. Developing countries are severely affected by increased resistance to antimicrobial agents due to poverty, lack of proper hygiene, and clean water, which can lead to bacterial infections with limited treatment options due to resistance.
Collapse
Affiliation(s)
- Sydney M Gambushe
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mohamed E El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75 123, Sweden
| |
Collapse
|
2
|
Petro CD, Duncan JK, Seldina YI, Allué-Guardia A, Eppinger M, Riddle MS, Tribble DR, Johnson RC, Dalgard CL, Sukumar G, Connor P, Boisen N, Melton-Celsa AR. Genetic and Virulence Profiles of Enteroaggregative Escherichia coli (EAEC) Isolated From Deployed Military Personnel (DMP) With Travelers' Diarrhea. Front Cell Infect Microbiol 2020; 10:200. [PMID: 32509590 PMCID: PMC7251025 DOI: 10.3389/fcimb.2020.00200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 02/01/2023] Open
Abstract
To discern if there was a particular genotype associated with clinical enteroaggregative Escherichia coli (EAEC) strains isolated from deployed military personnel (DMP) with travelers' diarrhea (TD), we characterized a collection of EAEC from DMP deployed to Afghanistan, Djibouti, Kenya, or Honduras. Although we did not identify a specific EAEC genotype associated with TD in DMP, we found that EAEC isolated at the first clinic visit were more likely to encode the dispersin gene aap than EAEC collected at follow-up visits. A majority of the EAEC isolates were typical EAEC that adhered to HEp-2 cells, formed biofilms, and harbored genes for aggregative adherence fimbriae (AAF), AggR, and serine protease autotransporters of Enterobacteriaceae (SPATEs). A separate subset of the EAEC had aggR and genes for SPATEs but encoded a gene highly homologous to that for CS22, a fimbriae more commonly found in enterotoxigenic E. coli. None of these CS22-encoding EAEC formed biofilms in vitro or adhered to HEp-2 cells. Whole genome sequence and single nucleotide polymorphism analyses demonstrated that most of the strains were genetically diverse, but that a few were closely related. Isolation of these related strains occurred within days to more than a year apart, a finding that suggests a persistent source and genomic stability. In an ampicillin-treated mouse model we found that an agg4A+ aar- isolate formed a biofilm in the intestine and caused reduced weight gain in mice, whereas a strain that did not form an in vivo biofilm caused no morbidity. Our diverse strain collection from DMP displays the heterogeneity of EAEC strains isolated from human patients, and our mouse model of infection indicated the genotype agg4A+ aar– and/or capacity to form biofilm in vivo may correlate to disease severity.
Collapse
Affiliation(s)
- Courtney D Petro
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey K Duncan
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yuliya I Seldina
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Mark S Riddle
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R Tribble
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ryan C Johnson
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Henry Jackson Foundation, Bethesda, MD, United States
| | - Patrick Connor
- Military Enteric Disease Group, Academic Department of Military Medicine, Birmingham, United Kingdom
| | - Nadia Boisen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Angela R Melton-Celsa
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
3
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|
4
|
Tarr GAM, Stokowski T, Shringi S, Tarr PI, Freedman SB, Oltean HN, Rabinowitz PM, Chui L. Contribution and Interaction of Shiga Toxin Genes to Escherichia coli O157:H7 Virulence. Toxins (Basel) 2019; 11:toxins11100607. [PMID: 31635282 PMCID: PMC6832461 DOI: 10.3390/toxins11100607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Escherichia coli O157:H7 is the predominant cause of diarrhea-associated hemolytic uremic syndrome (HUS) worldwide. Its cardinal virulence traits are Shiga toxins, which are encoded by stx genes, the most common of which are stx1a, stx2a, and stx2c. The toxins these genes encode differ in their in vitro and experimental phenotypes, but the human population-level impact of these differences is poorly understood. Using Shiga toxin-encoding bacteriophage insertion typing and real-time polymerase chain reaction, we genotyped isolates from 936 E. coli O157:H7 cases and verified HUS status via chart review. We compared the HUS risk between isolates with stx2a and those with stx2a and another gene and estimated additive interaction of the stx genes. Adjusted for age and symptoms, the HUS incidence of E. coli O157:H7 containing stx2a alone was 4.4% greater (95% confidence interval (CI) −0.3%, 9.1%) than when it occurred with stx1a. When stx1a and stx2a occur together, the risk of HUS was 27.1% lower (95% CI −87.8%, −2.3%) than would be expected if interaction were not present. At the population level, temporal or geographic shifts toward these genotypes should be monitored, and stx genotype may be an important consideration in clinically predicting HUS among E. coli O157:H7 cases.
Collapse
Affiliation(s)
- Gillian A M Tarr
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada.
| | - Taryn Stokowski
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Public Labs, Edmonton, AB T6G 2J2, Canada.
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stephen B Freedman
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada.
| | - Hanna N Oltean
- Washington State Department of Health, Shoreline, WA 98155, USA.
| | - Peter M Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Public Labs, Edmonton, AB T6G 2J2, Canada.
| |
Collapse
|
5
|
Yin S, Rusconi B, Sanjar F, Goswami K, Xiaoli L, Eppinger M, Dudley EG. Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages. BMC Genomics 2015; 16:733. [PMID: 26416807 PMCID: PMC4587872 DOI: 10.1186/s12864-015-1934-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023] Open
Abstract
Background Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen that causes severe human diseases including hemolytic uremic syndrome (HUS). The virulence factor that mediates HUS, Shiga toxin (Stx), is encoded within the genome of a lambdoid prophage. Although draft sequences are publicly available for a large number of E. coli O157:H7 strains, the high sequence similarity of stx-converting bacteriophages with other lambdoid prophages poses challenges to accurately assess the organization and plasticity among stx-converting phages due to assembly difficulties. Methods To further explore genome plasticity of stx-converting prophages, we enriched phage DNA from 45 ciprofloxacin-induced cultures for subsequent 454 pyrosequencing to facilitate assembly of the complete phage genomes. In total, 22 stx2a-converting phage genomes were closed. Results Comparison of the genomes distinguished nine distinct phage sequence types (PSTs) delineated by variation in obtained sequences, such as single nucleotide polymorphisms (SNPs) and insertion sequence element prevalence and location. These nine PSTs formed three distinct clusters, designated as PST1, PST2 and PST3. The PST2 cluster, identified in two clade 8 strains, was related to stx2a-converting phages previously identified in non-O157 Shiga-toxin producing E. coli (STEC) strains associated with a high incidence of HUS. The PST1 cluster contained phages related to those from E. coli O157:H7 strain Sakai (lineage I, clade 1), and PST3 contained a single phage that was distinct from the rest but most related to the phage from E. coli O157:H7 strain EC4115 (lineage I/II, clade 8). Five strains carried identical stx2a-converting phages (PST1-1) integrated at the same chromosomal locus, but these strains produced different levels of Stx2. Conclusion The stx2a-converting phages of E. coli O157:H7 can be categorized into at least three phage types. Diversification within a phage type is mainly driven by IS629 and by a small number of SNPs. Polymorphisms between phage genomes may help explain differences in Stx2a production between strains, however our data indicates that genes encoded external to the phage affect toxin production as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1934-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Yin
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Brigida Rusconi
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Fatemeh Sanjar
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kakolie Goswami
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lingzi Xiaoli
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark Eppinger
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA. .,Center of Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA. .,427 Food Science Building, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Griffing SM, MacCannell DR, Schmidtke AJ, Freeman MM, Hyytiä-Trees E, Gerner-Smidt P, Ribot EM, Bono JL. Canonical Single Nucleotide Polymorphisms (SNPs) for High-Resolution Subtyping of Shiga-Toxin Producing Escherichia coli (STEC) O157:H7. PLoS One 2015; 10:e0131967. [PMID: 26132731 PMCID: PMC4488506 DOI: 10.1371/journal.pone.0131967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023] Open
Abstract
The objective of this study was to develop a canonical, parsimoniously-informative SNP panel for subtyping Shiga-toxin producing Escherichia coli (STEC) O157:H7 that would be consistent with epidemiological, PFGE, and MLVA clustering of human specimens. Our group had previously identified 906 putative discriminatory SNPs, which were pared down to 391 SNPs based on their prevalence in a test set. The 391 SNPs were screened using a high-throughput form of TaqMan PCR against a set of clinical isolates that represent the most diverse collection of O157:H7 isolates from outbreaks and sporadic cases examined to date. Another 30 SNPs identified by others were also screened using the same method. Two additional targets were tested using standard TaqMan PCR endpoint analysis. These 423 SNPs were reduced to a 32 SNP panel with the almost the same discriminatory value. While the panel partitioned our diverse set of isolates in a manner that was consistent with epidemiological data and PFGE and MLVA phylogenies, it resulted in fewer subtypes than either existing method and insufficient epidemiological resolution in 10 of 47 clusters. Therefore, another round of SNP discovery was undertaken using comparative genomic resequencing of pooled DNA from the 10 clusters with insufficient resolution. This process identified 4,040 potential SNPs and suggested one of the ten clusters was incorrectly grouped. After its removal, there were 2,878 SNPs, of which only 63 were previously identified and 438 occurred across multiple clusters. Among highly clonal bacteria like STEC O157:H7, linkage disequilibrium greatly limits the number of parsimoniously informative SNPs. Therefore, it is perhaps unsurprising that our panel accounted for the potential discriminatory value of numerous other SNPs reported in the literature. We concluded published O157:H7 SNPs are insufficient for effective epidemiological subtyping. However, the 438 multi-cluster SNPs we identified may provide the additional information required.
Collapse
Affiliation(s)
- Sean M. Griffing
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Duncan R. MacCannell
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amber J. Schmidtke
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Molly M. Freeman
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Eija Hyytiä-Trees
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Peter Gerner-Smidt
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Efrain M. Ribot
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James L. Bono
- United States Meat Animal Research Center, United States Department of Agriculture, Agricultural Research Service, Clay Center, Nevada, United States of America
- * E-mail:
| |
Collapse
|
7
|
Eppinger M, Cebula TA. Future perspectives, applications and challenges of genomic epidemiology studies for food-borne pathogens: A case study of Enterohemorrhagic Escherichia coli (EHEC) of the O157:H7 serotype. Gut Microbes 2014; 6:194-201. [PMID: 25483335 PMCID: PMC4615391 DOI: 10.4161/19490976.2014.969979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The shiga-toxin (Stx)-producing human pathogen Escherichia coli serotype O157:H7 is a highly pathogenic subgroup of Stx-producing E. coli (STEC) with food-borne etiology and bovine reservoir. Each year in the U. S., approximately 100,000 patients are infected with enterohemorrhagic E. coli (EHEC) of the O157:H7 serotype. This food-borne pathogen is a global public health threat responsible for widespread outbreaks of human disease. Since its initial discovery in 1982, O157:H7 has rapidly become the dominant EHEC serotype in North America. Hospitalization rates among patients as high as 50% have been reported for severe outbreaks of human disease. Symptoms of disease can rapidly deteriorate and progress to life-threatening complications such as Hemolytic Uremic Syndrome (HUS), the leading cause of kidney failure in children, or Hemorrhagic Colitis. In depth understanding of the genomic diversity that exists among currently circulating EHEC populations has broad applications for improved molecular-guided biosurveillance, outbreak preparedness, diagnostic risk assessment, and development of alternative toxin-suppressing therapeutics.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Biology; The University of Texas at San Antonio; San Antonio, TX, USA,South Texas Center For Emerging Infectious Diseases; The University of Texas at San Antonio; San Antonio, TX, USA,Correspondence to: Mark Eppinger;
| | - Thomas A Cebula
- Department of Biology; Johns Hopkins University; Baltimore, MD, USA,CosmosID; Fairfax, VA, USA
| |
Collapse
|
8
|
Molecular typing of Escherichia coli O157:H7 isolates from Swedish cattle and human cases: population dynamics and virulence. J Clin Microbiol 2014; 52:3906-12. [PMID: 25143581 DOI: 10.1128/jcm.01877-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While all verotoxin-producing Escherichia coli O157:H7 bacteria are considered potential pathogens, their genetic subtypes appear to differ in their levels of virulence. The aim of this study was to compare the distribution of subtypes of E. coli O157:H7 in the cattle reservoir and in human cases with and without severe complications in order to gain clues about the relationship between subtype and relative virulence. A lineage-specific polymorphism assay (LSPA-6), multilocus variable-number tandem-repeat analysis (MLVA), and a novel real-time PCR assay to identify clade 8 were applied to a large and representative set of isolates from cattle from 1996 to 2009 (n = 381) and human cases from 2008 to 2011 (n = 197) in Sweden. Draft genome sequences were produced for four selected isolates. The E. coli O157:H7 isolates in Swedish cattle generally belonged to four groups with the LSPA-6 profiles 211111 (clade 8/non-clade 8), 213111, and 223323. The subtype composition of the cattle isolates changed dramatically during the study period with the introduction and rapid spread of the low-virulence 223323 subtype. The human cases presumed to have been infected within the country predominantly carried isolates with the profiles 211111 (clade 8) and 213111. Cases progressing to hemolytic-uremic syndrome (HUS) were mostly caused by clade 8, with MLVA profiles consistent with Swedish cattle as the source. In contrast, infections contracted abroad were caused by diverse subtypes, some of which were associated with a particular region. The work presented here confirms the high risk posed by the clade 8 variant of E. coli O157:H7. It also highlights the dynamic nature of the E. coli O157:H7 subtype composition in animal reservoirs and the importance of this composition for the human burden of disease.
Collapse
|
9
|
Precise dissection of an Escherichia coli O157:H7 outbreak by single nucleotide polymorphism analysis. J Clin Microbiol 2013; 51:3950-4. [PMID: 24048526 DOI: 10.1128/jcm.01930-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current pathogen-typing methods have suboptimal sensitivities and specificities. DNA sequencing offers an opportunity to type pathogens with greater degrees of discrimination using single nucleotide polymorphisms (SNPs) than with pulsed-field gel electrophoresis (PFGE) and other methodologies. In a recent cluster of Escherichia coli O157:H7 infections attributed to salad bar exposures and romaine lettuce, a subset of cases denied exposure to either source, although PFGE and multiple-locus variable-number tandem-repeat analysis (MLVA) suggested that all isolates had the same recent progenitor. Interrogation of a preselected set of 3,442,673 nucleotides in backbone open reading frames (ORFs) identified only 1 or 2 single nucleotide differences in 3 of 12 isolates from the cases who denied exposure. The backbone DNAs of 9 of 9 and 3 of 3 cases who reported or were unsure about exposure, respectively, were isogenic. Backbone ORF SNP set sequencing offers pathogen differentiation capabilities that exceed those of PFGE and MLVA.
Collapse
|
10
|
EspZ of enteropathogenic and enterohemorrhagic Escherichia coli regulates type III secretion system protein translocation. mBio 2012; 3:mBio.00317-12. [PMID: 23033475 PMCID: PMC3518918 DOI: 10.1128/mbio.00317-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal “translocation stop” activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.
Collapse
|
11
|
Escherichia coli serotype O55:H7 diversity supports parallel acquisition of bacteriophage at Shiga toxin phage insertion sites during evolution of the O157:H7 lineage. J Bacteriol 2012; 194:1885-96. [PMID: 22328665 DOI: 10.1128/jb.00120-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) continues to be a leading cause of mortality and morbidity in children around the world. Two EPEC genomes have been fully sequenced: those of EPEC O127:H6 strain E2348/69 (United Kingdom, 1969) and EPEC O55:H7 strain CB9615 (Germany, 2003). The O55:H7 serotype is a recent precursor to the virulent enterohemorrhagic E. coli O157:H7. To explore the diversity of O55:H7 and better understand the clonal evolution of O157:H7, we fully sequenced EPEC O55:H7 strain RM12579 (California, 1974), which was collected 1 year before the first U.S. isolate of O157:H7 was identified in California. Phage-related sequences accounted for nearly all differences between the two O55:H7 strains. Additionally, O55:H7 and O157:H7 strains were tested for the presence and insertion sites of Shiga toxin gene (stx)-containing bacteriophages. Analysis of non-phage-associated genes supported core elements of previous O157:H7 stepwise evolutionary models, whereas phage composition and insertion analyses suggested a key refinement. Specifically, the placement and presence of lambda-like bacteriophages (including those containing stx) should not be considered stable evolutionary markers or be required in placing O55:H7 and O157:H7 strains within the stepwise evolutionary models. Additionally, we suggest that a 10.9-kb region (block 172) previously believed unique to O55:H7 strains can be used to identify early O157:H7 strains. Finally, we defined two subsets of O55:H7 strains that share an as-yet-unobserved or extinct common ancestor with O157:H7 strains. Exploration of O55:H7 diversity improved our understanding of the evolution of E. coli O157:H7 and suggested a key revision to accommodate existing and future configurations of stx-containing bacteriophages into current models.
Collapse
|
12
|
Laing C, Villegas A, Taboada EN, Kropinski A, Thomas JE, Gannon VPJ. Identification of Salmonella enterica species- and subgroup-specific genomic regions using Panseq 2.0. INFECTION GENETICS AND EVOLUTION 2011; 11:2151-61. [PMID: 22001825 DOI: 10.1016/j.meegid.2011.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 09/02/2011] [Accepted: 09/22/2011] [Indexed: 01/04/2023]
Abstract
The pan-genome of a taxonomic group consists of evolutionarily conserved core genes shared by all members and accessory genes that are present only in some members of the group. Group- and subgroup-specific core genes are thought to contribute to shared phenotypes such as virulence and niche specificity. In this study we analyzed 39 Salmonella enterica genomes (16 closed, 23 draft), a species that contains two human-specific serovars that cause typhoid fever, as well as a large number of zoonotic serovars that cause gastroenteritis in humans. Panseq 2.0 was used to define the pan-genome by adjusting the threshold at which group-specific "core" loci are defined. We found the pan-genome to be 9.03 Mbp in size, and that the core genome size decreased, while the number of SNPs/100 bp increased, as the number of strains used to define the core genome increased, suggesting substantial divergence among S. enterica subgroups. Subgroup-specific "core" genes, in contrast, had fewer SNPs/100 bp, likely reflecting their more recent acquisition. Phylogenetic trees were created from the concatenated and aligned pan-genome, the core genome, and multi-locus-sequence typing (MLST) loci. Branch support increased among the trees, and strains of the same serovar grouped closer together as the number of loci used to create the tree increased. Further, high levels of discrimination were achieved even amongst the most closely related strains of S. enterica Typhi, suggesting that the data generated by Panseq may also be of value in short-term epidemiological studies. Panseq provides an easy and fast way of performing pan-genomic analyses, which can include the identification of group-dominant as well as group-specific loci and is available as a web-server and a standalone version at http://lfz.corefacility.ca/panseq/.
Collapse
Affiliation(s)
- Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, AB, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Everything at once: comparative analysis of the genomes of bacterial pathogens. Vet Microbiol 2011; 153:13-26. [PMID: 21764529 DOI: 10.1016/j.vetmic.2011.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022]
Abstract
The sum of unique genes in all genomes of a bacterial species is referred to as the pan-genome and is comprised of variably absent or present accessory genes and universally present core genes. The accessory genome is an important source of genetic variability in bacterial populations, allowing sub-populations of bacteria to better adapt to specific niches. Such subgroups may themselves have a relatively stable core genome that may influence host preference, virulence, or an association with specific disease syndromes. The core genome provides a useful means of phylogenetic reconstruction as well as contributing to phenotypic heterogeneity. Variation within the pan-genome forms the basis of comparative genotyping techniques, which have evolved alongside technology. Current high-throughput sequencing platforms have created an unprecedented opportunity for comparisons among multiple, closely related genomes. The computer algorithms and software for such comparisons continue to evolve and promise exciting advances in the world of bacterial comparative genomics. We review genotyping techniques based upon phenotypic traits, both core and accessory genomes, and look at some of the software programs currently available to perform whole-genome comparative analyses.
Collapse
|
14
|
Napolitano MG, Almagro-Moreno S, Boyd EF. Dichotomy in the evolution of pathogenicity island and bacteriophage encoded integrases from pathogenic Escherichia coli strains. INFECTION GENETICS AND EVOLUTION 2011; 11:423-36. [DOI: 10.1016/j.meegid.2010.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 11/29/2022]
|