1
|
Conceição EC, Salvato RS, Gomes KM, Guimarães AEDS, da Conceição ML, Souza e Guimarães RJDP, Sharma A, Furlaneto IP, Barcellos RB, Bollela VR, Anselmo LMP, Sisco MC, Niero CV, Ferrazoli L, Refrégier G, Lourenço MCDS, Gomes HM, de Brito AC, Catanho M, Duarte RS, Suffys PN, Lima KVB. Molecular epidemiology of Mycobacterium tuberculosis in Brazil before the whole genome sequencing era: a literature review. Mem Inst Oswaldo Cruz 2021; 116:e200517. [PMID: 33729319 PMCID: PMC7976556 DOI: 10.1590/0074-02760200517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
Molecular-typing can help in unraveling epidemiological scenarios and improvement for disease control strategies. A literature review of Mycobacterium tuberculosis transmission in Brazil through genotyping on 56 studies published from 1996-2019 was performed. The clustering rate for mycobacterial interspersed repetitive units - variable tandem repeats (MIRU-VNTR) of 1,613 isolates were: 73%, 33% and 28% based on 12, 15 and 24-loci, respectively; while for RFLP-IS6110 were: 84% among prison population in Rio de Janeiro, 69% among multidrug-resistant isolates in Rio Grande do Sul, and 56.2% in general population in São Paulo. These findings could improve tuberculosis (TB) surveillance and set up a solid basis to build a database of Mycobacterium genomes.
Collapse
Affiliation(s)
- Emilyn Costa Conceição
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia
Evandro Chagas, Programa de Pós-Graduação em Pesquisa Clínica e Doenças Infecciosas,
Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia
Evandro Chagas, Laboratório de Bacteriologia e Bioensaios em Micobactérias, Rio de
Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Richard Steiner Salvato
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
- Secretaria Estadual de Saúde do Rio Grande do Sul, Centro Estadual
de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto
Alegre, RS, Brasil
| | - Karen Machado Gomes
- Fundação Oswaldo Cruz-Fiocruz, Escola Nacional de Saúde Pública
Sergio Arouca, Centro de Referência Professor Hélio Fraga, Laboratório de Referência
Nacional para Tuberculose e outras Micobacterioses, Rio de Janeiro, RJ, Brasil
| | - Arthur Emil dos Santos Guimarães
- Universidade do Estado do Pará, Instituto de Ciências Biológicas e
da Saúde, Pós-Graduação Biologia Parasitária na Amazônia, Belém, PA, Brasil
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia,
Ananindeua, PA, Brasil
| | - Marília Lima da Conceição
- Universidade do Estado do Pará, Instituto de Ciências Biológicas e
da Saúde, Pós-Graduação Biologia Parasitária na Amazônia, Belém, PA, Brasil
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia,
Ananindeua, PA, Brasil
| | | | - Abhinav Sharma
- International Institute of Information Technology, Department of
Data Science, Bangalore, India
| | | | - Regina Bones Barcellos
- Secretaria Estadual de Saúde do Rio Grande do Sul, Centro Estadual
de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto
Alegre, RS, Brasil
| | - Valdes Roberto Bollela
- Universidade de São Paulo, Departamento de Clínica Médica da
Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | - Lívia Maria Pala Anselmo
- Universidade de São Paulo, Departamento de Clínica Médica da
Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | - Maria Carolina Sisco
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia
Paulo de Góes, Laboratório de Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Cristina Viana Niero
- Universidade Federal de São Paulo, Departamento de Microbiologia,
Imunologia e Parasitologia, São Paulo, SP, Brasil
| | - Lucilaine Ferrazoli
- Instituto Adolfo Lutz, Centro de Bacteriologia, Núcleo de
Tuberculose e Micobacterioses, São Paulo, SP, Brasil
| | - Guislaine Refrégier
- Universit e Paris-Saclay, Ecologie Systematique Evolution, Centre
National de la Recherche Scientifique, AgroParisTech, Orsay, France
| | - Maria Cristina da Silva Lourenço
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia
Evandro Chagas, Laboratório de Bacteriologia e Bioensaios em Micobactérias, Rio de
Janeiro, RJ, Brasil
| | - Harrison Magdinier Gomes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Artemir Coelho de Brito
- Coordenação Geral de Vigilância das Doenças de Transmissão
Respiratória de Condições Crônicas, Brasília, DF, Brasil
| | - Marcos Catanho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Rafael Silva Duarte
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia
Paulo de Góes, Laboratório de Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Philip Noel Suffys
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Karla Valéria Batista Lima
- Universidade do Estado do Pará, Instituto de Ciências Biológicas e
da Saúde, Pós-Graduação Biologia Parasitária na Amazônia, Belém, PA, Brasil
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia,
Ananindeua, PA, Brasil
| |
Collapse
|
2
|
Molecular characterisation of multidrug-resistant Mycobacterium tuberculosis isolates from a high-burden tuberculosis state in Brazil. Epidemiol Infect 2020; 147:e216. [PMID: 31364547 PMCID: PMC6624858 DOI: 10.1017/s0950268819001006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death among infectious diseases worldwide. Among the estimated cases of drug-resistant TB, approximately 60% occur in the BRICS countries (Brazil, Russia, India, China and South Africa). Among Brazilian states, primary and acquired multidrug-resistant TB (MDR-TB) rates were the highest in Rio Grande do Sul (RS). This study aimed to perform molecular characterisation of MDR-TB in the State of RS, a high-burden Brazilian state. We performed molecular characterisation of MDR-TB cases in RS, defined by drug susceptibility testing, using 131 Mycobacterium tuberculosis (M.tb) DNA samples from the Central Laboratory. We carried out MIRU-VNTR 24loci, spoligotyping, sequencing of the katG, inhA and rpoB genes and RDRio sublineage identification. The most frequent families found were LAM (65.6%) and Haarlem (22.1%). RDRio deletion was observed in 42 (32%) of the M.tb isolates. Among MDR-TB cases, eight (6.1%) did not present mutations in the studied genes. In 116 (88.5%) M.tb isolates, we found mutations associated with rifampicin (RIF) resistance in rpoB gene, and in 112 isolates (85.5%), we observed mutations related to isoniazid resistance in katG and inhA genes. An insertion of 12 nucleotides (CCAGAACAACCC) at the 516 codon in the rpoB gene, possibly responsible for a decreased interaction of RIF and RNA polymerase, was found in 19/131 of the isolates, belonging mostly to LAM and Haarlem families. These results enable a better understanding of the dynamics of transmission and evolution of MDR-TB in the region.
Collapse
|
3
|
Karmakar M, Trauer JM, Ascher DB, Denholm JT. Hyper transmission of Beijing lineage Mycobacterium tuberculosis: Systematic review and meta-analysis. J Infect 2019; 79:572-581. [PMID: 31585190 DOI: 10.1016/j.jinf.2019.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The globally distributed "Beijing" lineage of Mycobacterium tuberculosis has been associated with outbreaks worldwide. Laboratory based studies have suggested that Beijing lineage may have increased fitness; however, it has not been established whether these differences are of epidemiological significance with regards to transmission. Therefore, we undertook a systematic review of epidemiological studies of tuberculosis clustering to compare the transmission dynamics of Beijing lineages versus the non-Beijing lineages. METHODS We systematically searched Embase and MEDLINE before 31st December 2018, for studies which provided information on the transmission dynamics of the different M. tuberculosis lineages. We included articles that conducted population-based cross-sectional or longitudinal molecular epidemiological studies reporting information about extent of transmission of different lineages. The protocol for this systematic review was prospectively registered with PROSPERO (CDR42018088579). RESULTS Of 2855 records identified by the search, 46 were included in the review, containing 42,700 patients from 27 countries. Beijing lineage was the most prevalent and highly clustered strain in 72.4% of the studies and had a higher likelihood of transmission than non-Beijing lineages (OR 1·81 [95% 1·28-2·57], I2 = 94·0%, τ2 = 0·59, p < 0·01). CONCLUSIONS Despite considerable heterogeneity across epidemiological contexts, Beijing lineage appears to be more transmissible than other lineages.
Collapse
Affiliation(s)
- Malancha Karmakar
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Microbiology and Immunology, at the Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - James M Trauer
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - David B Ascher
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia; Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | - Justin T Denholm
- Victorian Tuberculosis Program, Melbourne Health, 792 Elizabeth Street, Melbourne, Victorian 3000 Australia; Department of Microbiology and Immunology, at the Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
de Almeida IN, Vasconcellos SEG, de Assis Figueredo LJ, Dantas NGT, Augusto CJ, Hadaad JPA, Suffys PN, da Silva Carvalho W, de Miranda SS. Frequency of the Mycobacterium tuberculosis RD Rio genotype and its association with multidrug-resistant tuberculosis. BMC Infect Dis 2019; 19:556. [PMID: 31238885 PMCID: PMC6593491 DOI: 10.1186/s12879-019-4152-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent decades, Mycobacterium tuberculosis with the RDRio genotype, frequently isolated from tuberculosis patients in Rio de Janeiro, has become part of the Latin American - Mediterranean (LAM) family and has been associated with multidrug-resistant tuberculosis (MDR-TB). The aim of this study was to investigate the frequency of M. tuberculosis RDRio in the state of Minas Gerais, Brazil, and its relationship with MDR-TB. METHODS For convenience, 172 susceptible and 63 MDR M. tuberculosis isolates were taken from pulmonary samples from patients diagnosed between January 2007 and December 2011. The DNA extracted from these isolates was analyzed by spoligotyping, PCR-RFLP to characterize fbpC103/Ag85C103, multiplex PCR to detect RDRio and RD174, and MIRU-VNTR 24 loci. RESULTS Among the 235 isolates, the RDRio pattern was identified in 122 (51.9%) isolates (IC 0.45-0.58), with 100 (42.5%) wild-type and 13 (5.5%) mixed pattern isolates, whereas RD174 was identified in 93 of the 122 RDRio positive samples (76.3%). The LAM family and the LAM9 lineage were the most frequently identified among the isolates in this study. Among the 63 MDR isolates, 41 (65.1%) were RDRio and 28 (44.4%) RD174. CONCLUSION The association of both deletions with MDR proved to be statistically significant, corroborating the few reports that have associated RDRio with MDR.
Collapse
Affiliation(s)
- Isabela Neves de Almeida
- Laboratório de Pesquisa em Micobactérias, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sidra Ezidio Gonçalves Vasconcellos
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Lida Jouca de Assis Figueredo
- Laboratório de Pesquisa em Micobactérias, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Nayanne Gama Teixeira Dantas
- Laboratório de Pesquisa em Micobactérias, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | | | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Silvana Spíndola de Miranda
- Laboratório de Pesquisa em Micobactérias, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Díaz Acosta CC, Russomando G, Candia N, Ritacco V, Vasconcellos SEG, de Berrêdo Pinho Moreira M, de Romero NJ, Morcillo N, De Waard JH, Gomes HM, Suffys PN. Exploring the "Latin American Mediterranean" family and the RD Rio lineage in Mycobacterium tuberculosis isolates from Paraguay, Argentina and Venezuela. BMC Microbiol 2019; 19:131. [PMID: 31195979 PMCID: PMC6567603 DOI: 10.1186/s12866-019-1479-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Background The Latin American & Mediterranean (LAM) spoligotype family is one of the most successful genotype of Mycobacterium tuberculosis worldwide and particularly prevalent in South-America. Within this family, a sublineage named Region of Difference Rio (RDRio) was reported initially in Brazil and is characterized by a genomic deletion of about 26.3 kb. This lineage seems to show a specific adaptation to the Euro-Latin American population. In this context, we sought to evaluate the LAM family and the presence of the RDRio genotype in samples from three Latin American countries including Paraguay, Venezuela and Argentina. To detect LAM strains reliably we applied a typing scheme using spoligotyping, 12 loci MIRU-VNTR, the Ag85C103 SNP and the regions of difference RDRio and RD174. IS6110-RFLP results were also used when available. Results Genotyping of 413 M. tuberculosis isolates from three Latin-American countries detected LAM (46%) and the ill-defined T clade (16%) as the most frequent families. The highest clustering rate was detected in the sample population from the city of Caracas in Venezuela. We observed considerable differences in the presence of the RDRio lineage, with high frequency in Caracas-Venezuela (55%) and low frequency in Buenos Aires-Argentina (11%) and Paraguay (10%). The molecular markers (RD174, Ag85C103, MIRU02-MIRU40 signature) of the RDRio lineage were essentially confirmed. For the LAM family, the most polymorphic loci were MIRU40, MIRU31, MIRU10, MIRU26, MIRU16 and the least polymorphic MIRU24, MIRU20, MIRU04, MIRU23. Conclusions Our results suggest a differential adaptation of LAM-sublineages in neighboring populations and that RDRio strains spread regionally with different rates of distribution. The Ag85C SNP and RDs (RD174, RDRio) tested in this study can in fact facilitate molecular epidemiological studies of LAM strains in endemic settings and low-income countries. Electronic supplementary material The online version of this article (10.1186/s12866-019-1479-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chyntia Carolina Díaz Acosta
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay.,Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Graciela Russomando
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Norma Candia
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Viviana Ritacco
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Carlos G. Malbran", Buenos Aires, Argentina
| | - Sidra E G Vasconcellos
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | | | - Nora Morcillo
- Instituto Nacional de Enfermedades Respiratorias Emilio Coni, Buenos Aires, Argentina
| | - Jacobus Henri De Waard
- Laboratorio de Tuberculosis, Instituto de Biomedicina, Caracas, Venezuela.,Present Address: One Health Research Group. Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Harrison Magdinier Gomes
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular aplicada às Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
6
|
Woodman M, Haeusler IL, Grandjean L. Tuberculosis Genetic Epidemiology: A Latin American Perspective. Genes (Basel) 2019; 10:genes10010053. [PMID: 30654542 PMCID: PMC6356704 DOI: 10.3390/genes10010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
There are an estimated 10 million new cases of tuberculosis worldwide annually, with 282,000 new or relapsed cases each year reported from the Americas. With improvements in genome sequencing technology, it is now possible to study the genetic diversity of tuberculosis with much greater resolution. Although tuberculosis bacteria do not engage in horizontal gene transfer, the genome is far more variable than previously thought. The study of genome-wide variation in tuberculosis has improved our understanding of the evolutionary origins of tuberculosis, the arrival of tuberculosis in Latin America, the genetic determinants of drug resistance, and lineage-specific associations with important clinical phenotypes. This article reviews what is known about the arrival of tuberculosis in Latin America, the genetic diversity of tuberculosis in Latin America, and the genotypic determinants of clinical phenotypes.
Collapse
Affiliation(s)
- Marc Woodman
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Ilsa L Haeusler
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Louis Grandjean
- Institute of Child Health, University College London, London WC1N 3JH, UK.
- Department of Medicine, Imperial College London, London W2 1NY, UK.
- Great Ormond Street Hospital, Institute of Child Health, University College London, London WC1N 3JH, UK.
- Laboratorio de Investigacion y Desarollo, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres 15102, Lima, Peru.
| |
Collapse
|
7
|
Brynildsrud OB, Pepperell CS, Suffys P, Grandjean L, Monteserin J, Debech N, Bohlin J, Alfsnes K, Pettersson JOH, Kirkeleite I, Fandinho F, da Silva MA, Perdigao J, Portugal I, Viveiros M, Clark T, Caws M, Dunstan S, Thai PVK, Lopez B, Ritacco V, Kitchen A, Brown TS, van Soolingen D, O’Neill MB, Holt KE, Feil EJ, Mathema B, Balloux F, Eldholm V. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. SCIENCE ADVANCES 2018; 4:eaat5869. [PMID: 30345355 PMCID: PMC6192687 DOI: 10.1126/sciadv.aat5869] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/11/2018] [Indexed: 05/23/2023]
Abstract
On the basis of population genomic and phylogeographic analyses of 1669 Mycobacterium tuberculosis lineage 4 (L4) genomes, we find that dispersal of L4 has been completely dominated by historical migrations out of Europe. We demonstrate an intimate temporal relationship between European colonial expansion into Africa and the Americas and the spread of L4 tuberculosis (TB). Markedly, in the age of antibiotics, mutations conferring antimicrobial resistance overwhelmingly emerged locally (at the level of nations), with minimal cross-border transmission of resistance. The latter finding was found to reflect the relatively recent emergence of these mutations, as a similar degree of local restriction was observed for susceptible variants emerging on comparable time scales. The restricted international transmission of drug-resistant TB suggests that containment efforts at the level of individual countries could be successful.
Collapse
Affiliation(s)
- Ola B. Brynildsrud
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Caitlin S. Pepperell
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Philip Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Avenida Brasil 4365, C.P. 926, Manguinhos 21040-360, Rio de Janeiro, Brazil
| | - Louis Grandjean
- Department of Paediatric Infectious Diseases, Imperial College London, W2 1NY, London, UK
| | - Johana Monteserin
- Instituto Nacional de Enfermedades Infecciosas, ANLIS Carlos Malbran, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires, Argentina
| | - Nadia Debech
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Jon Bohlin
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Kristian Alfsnes
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - John O.-H. Pettersson
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
- Public Health Agency of Sweden, Nobels vg 18, SE-171 82 Solna, Sweden
| | - Ingerid Kirkeleite
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Fatima Fandinho
- Laboratorio de Bacteriologia da Tuberculose, Centro de Referłncia Professor Helio Fraga-Jacarepagu, Estrada de Curicica 2000, Brazil
| | - Marcia Aparecida da Silva
- Laboratorio de Bacteriologia da Tuberculose, Centro de Referłncia Professor Helio Fraga-Jacarepagu, Estrada de Curicica 2000, Brazil
| | - Joao Perdigao
- Instituto de Investigao do Medicamento, Faculdade de Farmcia, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigao do Medicamento, Faculdade de Farmcia, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Viveiros
- Unidade de Microbiologia Medica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Taane Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Maxine Caws
- Liverpool School of Tropical medicine, Department of Clinical Sciences, Liverpool, UK
- Birat-Nepal Medical Trust, Lazimpat, Kathmandu, Nepal
| | - Sarah Dunstan
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Beatriz Lopez
- Instituto Nacional de Enfermedades Infecciosas, ANLIS Carlos Malbran, Buenos Aires, Argentina
| | - Viviana Ritacco
- Instituto Nacional de Enfermedades Infecciosas, ANLIS Carlos Malbran, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires, Argentina
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA 52242, USA
| | - Tyler S. Brown
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dick van Soolingen
- Center for Infectious Disease Research, Diagnostics and Perinatal Screening, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, Netherlands
| | - Mary B. O’Neill
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kathryn E. Holt
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Edward J. Feil
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Barun Mathema
- Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | - Francois Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Vegard Eldholm
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| |
Collapse
|
8
|
Genotypic diversity of Mycobacterium tuberculosis in Buenos Aires, Argentina. INFECTION GENETICS AND EVOLUTION 2018; 62:1-7. [PMID: 29630937 DOI: 10.1016/j.meegid.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022]
Abstract
Buenos Aires is an overpopulated port city historically inhabited by people of European descent. Together with its broader metropolitan area, the city exhibits medium tuberculosis rates, and receives migrants, mainly from tuberculosis highly endemic areas of Argentina and neighboring countries. This work was aimed to gain insight into the Mycobacterium tuberculosis population structure in two suburban districts of Buenos Aires which are illustrative of the overall situation of tuberculosis in Argentina. The Lineage 4 Euro-American accounted for >99% of the 816 isolates analyzed (one per patient). Frequencies of spoligotype families were T 35.9%, LAM 33.2%, Haarlem 19.5%, S 3.2%, X 1.5%, Ural 0.7%, BOV 0.2%, Beijing 0.2%, and Cameroon 0.2%. Unknown signatures accounted for 5.3% isolates. Of 55 spoligotypes not matching any extant shared international type (SIT) in SITVIT database, 22 fitted into 15 newly-issued SITs. Certain autochthonous South American genotypes were found to be actively evolving. LAM3, which is wild type for RDrio, was the predominant LAM subfamily in both districts and the RDrio signature was rare among autochthonous, newly created, SITs and orphan patterns. Two genotypes that are rarely observed in neighboring countries ̶ SIT2/H2 and SIT159/T1 Tuscany ̶ were conspicuously represented in Argentina. The infrequent Beijing patterns belonged to Peruvian patients. We conclude that the genotype diversity observed reflects the influence of the Hispanic colonization and more recent immigration waves from Mediterranean and neighboring countries. Unlike in Brazil, the RDrio type does not play a major role in the tuberculosis epidemic in Buenos Aires.
Collapse
|
9
|
de Almeida AL, Scodro RBDL, de Carvalho HC, Costacurta GF, Baldin VP, Santos NCS, Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Siqueira VLD, Caleffi-Ferracioli KR, Shibata FK, Sprada A, Cardoso RF. RD RioMycobacterium tuberculosis lineage in the Brazil/Paraguay/Argentina triple border. Tuberculosis (Edinb) 2018; 110:68-78. [PMID: 29779776 DOI: 10.1016/j.tube.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The high tuberculosis (TB) incidence rates, the closeness of the cities and the high migration flux on the Brazil/Paraguay/Argentina border deserves an in-depth study, using Mycobacterial Interspersed Repetitive Unit (MIRU) and Spoligotyping genetic markers to explore the impact of the Mycobacterium tuberculosis RDRio lineage on disease transmission and resistance to anti-TB drugs in this setting. Although without the totality of M. tuberculosis isolates causing TB in this studied setting, a number of 97 isolates obtained from sputa samples culture of patients with confirmed TB, from 2013 to 2015, were submitted to 24 loci MIRU, Spoligotyping, detection of RDRio lineage and detection of mutation related to isoniazid and rifampicin resistance by MTBDRplus/DNA STRIP. In this sample, it was observed high clonal variability of circulating M. tuberculosis isolates causing TB in Brazilian cities bordering Paraguay and Argentina. The percentage of RDRio lineage causing TB in this setting was 15.46%, and lower than the detected in different areas of Brazil. According to 24 loci MIRU, the major MIRU International Type (MIT) related with RDRio lineage were MIT 26, MIT 738, MIT 601 with four, two and one isolates, respectively. Eight isolates with RDRio marker were classified as orphans. The mainly Spoligofamily related with RDRio lineage was LAM1 and LAM9 and no relationship between RDRio lineage and resistance in M. tuberculosis isolates circulating in this setting could be established. This work is pioneer in studying the dynamics of RDRio lineage transmission on the Brazil/Paraguay/Argentina border and deserves further studies to analyze the real contribution of the RDRio lineage in outbreaks and the risk of significant development of MDR-TB in the setting studied.
Collapse
Affiliation(s)
- Aryadne Larissa de Almeida
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil.
| | - Regiane Bertin de Lima Scodro
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, PR, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, PR, Brazil.
| | - Hayalla Corrêa de Carvalho
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil.
| | | | - Vanessa Pietrowski Baldin
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil.
| | | | | | | | - Vera Lucia Dias Siqueira
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil; Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, PR, Brazil.
| | | | | | | | - Rosilene Fressatti Cardoso
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, PR, Brazil; Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, PR, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, PR, Brazil.
| |
Collapse
|
10
|
Peres RL, Vinhas SA, Ribeiro FKC, Palaci M, do Prado TN, Reis-Santos B, Zandonade E, Suffys PN, Golub JE, Riley LW, Maciel EL. Risk factors associated with cluster size of Mycobacterium tuberculosis (Mtb) of different RFLP lineages in Brazil. BMC Infect Dis 2018; 18:71. [PMID: 29422032 PMCID: PMC5806441 DOI: 10.1186/s12879-018-2969-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) transmission is influenced by patient-related risk, environment and bacteriological factors. We determined the risk factors associated with cluster size of IS6110 RFLP based genotypes of Mycobacterium tuberculosis (Mtb) isolates from Vitoria, Espirito Santo, Brazil. METHODS Cross-sectional study of new TB cases identified in the metropolitan area of Vitoria, Brazil between 2000 and 2010. Mtb isolates were genotyped by the IS6110 RFLP, spoligotyping and RDRio. The isolates were classified according to genotype cluster sizes by three genotyping methods and associated patient epidemiologic characteristics. Regression Model was performed to identify factors associated with cluster size. RESULTS Among 959 Mtb isolates, 461 (48%) cases had an isolate that belonged to an RFLP cluster, and six clusters with ten or more isolates were identified. Of the isolates spoligotyped, 448 (52%) were classified as LAM and 412 (48%) as non-LAM. Our regression model found that 6-9 isolates/RFLP cluster were more likely belong to the LAM family, having the RDRio genotype and to be smear-positive (adjusted OR = 1.17, 95% CI 1.08-1.26; adjusted OR = 1.25, 95% CI 1.14-1.37; crude OR = 2.68, 95% IC 1.13-6.34; respectively) and living in a Serra city neighborhood decrease the risk of being in the 6-9 isolates/RFLP cluster (adjusted OR = 0.29, 95% CI, 0.10-0.84), than in the others groups. Individuals aged 21 to 30, 31 to 40 and > 50 years were less likely of belonging the 2-5 isolates/RFLP cluster than unique patterns compared to individuals < 20 years of age (adjusted OR = 0.49, 95% CI 0.28-0.85, OR = 0.43 95% CI 0.24-0.77and OR = 0. 49, 95% CI 0.26-0.91), respectively. The extrapulmonary disease was less likely to occur in those infected with strains in the 2-5 isolates/cluster group (adjustment OR = 0.45, 95% CI 0.24-0.85) than unique patterns. CONCLUSIONS We found that a large proportion of new TB infections in Vitoria is caused by prevalent Mtb genotypes belonging to the LAM family and RDRio genotypes. Such information demonstrates that some genotypes are more likely to cause recent transmission. Targeting interventions such as screening in specific areas and social risk groups, should be a priority for reducing transmission.
Collapse
Affiliation(s)
- Renata Lyrio Peres
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Espirito Santo, Brazil
- Laboratório de Epidemiologia da Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468- Maruípe-, Vitória, ES Brazil
| | - Solange Alves Vinhas
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Espirito Santo, Brazil
| | | | - Moisés Palaci
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Espirito Santo, Brazil
| | - Thiago Nascimento do Prado
- Laboratório de Epidemiologia da Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468- Maruípe-, Vitória, ES Brazil
| | - Bárbara Reis-Santos
- Laboratório de Epidemiologia da Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468- Maruípe-, Vitória, ES Brazil
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Eliana Zandonade
- Laboratório de Epidemiologia da Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468- Maruípe-, Vitória, ES Brazil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz – FioCruz, Rio de Janeiro, Brazil
| | | | - Lee W. Riley
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA USA
| | - Ethel Leonor Maciel
- Laboratório de Epidemiologia da Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468- Maruípe-, Vitória, ES Brazil
| |
Collapse
|
11
|
Abstract
The tuberculosis agent Mycobacterium tuberculosis has undergone a long and selective evolution toward human infection and represents one of the most widely spread pathogens due to its efficient aerosol-mediated human-to-human transmission. With the availability of more and more genome sequences, the evolutionary trajectory of this obligate pathogen becomes visible, which provides us with new insights into the molecular events governing evolution of the bacterium and its ability to accumulate drug-resistance mutations. In this review, we summarize recent developments in mycobacterial research related to this matter that are important for a better understanding of the current situation and future trends and developments in the global epidemiology of tuberculosis, as well as for possible public health intervention possibilities.
Collapse
|
12
|
Monteserin J, Paul R, Latini C, Simboli N, Yokobori N, Delfederico L, López B, Ritacco V. Relation of Mycobacterium tuberculosis mutations at katG315 and inhA-15 with drug resistance profile, genetic background, and clustering in Argentina. Diagn Microbiol Infect Dis 2017; 89:197-201. [PMID: 28844342 DOI: 10.1016/j.diagmicrobio.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
We analyzed 362 isoniazid-resistant clinical isolates of Mycobacterium tuberculosis obtained countrywide for the presence of mutation at katG315 and inhA-15 in relation to genotype, pattern of phenotypic resistance to other drugs, and ability to spread. We found the following mutation frequencies: katG315MUT/inhA-15wt 53.0%, katG315wt/inhA-15MUT 27.4%, katG315wt/inhA-15wt 19.3%, and katG315MUT/inhA-15MUT only 0.3%. Mutation at katG315 associated with the LAM superfamily; mutation at inhA-15 associated with the S family and the T1 Tuscany genotype; the combination katG315wt/inhA-15wt associated with the T1 Ghana genotype. Isolates harboring katG315MUT/inhA-15wt tended to accumulate resistance to other drugs and were more frequently found in cluster; isolates harboring katG315wt/inhA-15wt were more frequently found as orphan isolates. Although epidemiological and host factors could also be modulating the events observed, in Argentina, the systematic genotyping of drug resistant clinical isolates could help to predict an enhanced risk of transmission and a propensity to develop resistance to increasing numbers of drugs.
Collapse
Affiliation(s)
- Johana Monteserin
- Instituto Nacional de Enfermedades Infecciosas INEI-ANLIS, Buenos Aires, Argentina.
| | - Roxana Paul
- Instituto Nacional de Enfermedades Infecciosas INEI-ANLIS, Buenos Aires, Argentina
| | | | - Norberto Simboli
- Instituto Nacional de Enfermedades Infecciosas INEI-ANLIS, Buenos Aires, Argentina
| | - Noemí Yokobori
- Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucrecia Delfederico
- Laboratorio de Microbiología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Beatriz López
- Instituto Nacional de Enfermedades Infecciosas INEI-ANLIS, Buenos Aires, Argentina
| | - Viviana Ritacco
- Instituto Nacional de Enfermedades Infecciosas INEI-ANLIS, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Moraes EB, Slompo L, Finardi AJ, Silveira HPPD, Ruiz L, Gomes HM, Richini VB, Suffys P, Fortaleza CMCB, Cavalcanti R, Baptista IMFD. Tuberculosis associated factors caused by Mycobacterium tuberculosis of the RDRio genotype. Mem Inst Oswaldo Cruz 2017; 112:182-187. [PMID: 28225901 PMCID: PMC5319367 DOI: 10.1590/0074-02760160347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eloise Brasil Moraes
- Instituto Lauro de Souza Lima, Brasil; Universidade Estadual Paulista Júlio de Mesquita Filho, Brasil
| | | | - Amanda Juliane Finardi
- Instituto Lauro de Souza Lima, Brasil; Universidade Estadual Paulista Júlio de Mesquita Filho, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Evolutionary History and Ongoing Transmission of Phylogenetic Sublineages of Mycobacterium tuberculosis Beijing Genotype in China. Sci Rep 2016; 6:34353. [PMID: 27681182 PMCID: PMC5041183 DOI: 10.1038/srep34353] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/09/2016] [Indexed: 11/15/2022] Open
Abstract
Mycobacterium tuberculosis Beijing genotype originated in China and has undergone a dramatic population growth and global spread in the last century. Here, a collection of M. tuberculosis Beijing family isolates from different provinces across all China was genotyped by high-resolution (24-MIRU-VNTR) and low-resolution, high-rank (modern and ancient sublineages) markers. The molecular profiles and global and local phylogenies were compared to the strain phenotype and patient data. The phylogeographic patterns observed in the studied collection demonstrate that large-scale (but not middle/small-scale) distance remains one of the decisive factors of the genetic divergence of M. tuberculosis populations. Analysis of diversity and network topology of the local collections appears to corroborate a recent intriguing hypothesis about Beijing genotype originating in South China. Placing our results within the Eurasian context suggested that important Russian B0/W148 and Asian/Russian A0/94-32 epidemic clones of the Beijing genotype could trace their origins to the northeastern and northwestern regions of China, respectively. The higher clustering of the modern isolates in children and lack of increased MDR rate in any sublineage suggest that not association with drug resistance but other (e.g., speculatively, virulence-related) properties underlie an enhanced dissemination of the evolutionarily recent, modern sublineage of the Beijing genotype in China.
Collapse
|
15
|
Mokrousov I, Vyazovaya A, Iwamoto T, Skiba Y, Pole I, Zhdanova S, Arikawa K, Sinkov V, Umpeleva T, Valcheva V, Alvarez Figueroa M, Ranka R, Jansone I, Ogarkov O, Zhuravlev V, Narvskaya O. Latin-American-Mediterranean lineage of Mycobacterium tuberculosis: Human traces across pathogen's phylogeography. Mol Phylogenet Evol 2016; 99:133-143. [PMID: 27001605 DOI: 10.1016/j.ympev.2016.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 01/18/2023]
Abstract
Currently, Mycobacterium tuberculosis isolates of Latin-American Mediterranean (LAM) family may be detected far beyond the geographic areas that coined its name 15years ago. Here, we established the framework phylogeny of this geographically intriguing and pathobiologically important mycobacterial lineage and hypothesized how human demographics and migration influenced its phylogeography. Phylogenetic analysis of LAM isolates from all continents based on 24 variable number of tandem repeats (VNTR) loci and other markers identified three global sublineages with certain geographic affinities and defined by large deletions RD115, RD174, and by spoligotype SIT33. One minor sublineage (spoligotype SIT388) appears endemic in Japan. One-locus VNTR signatures were established for sublineages and served for their search in published literature and geographic mapping. We suggest that the LAM family originated in the Western Mediterranean region. The most widespread RD115 sublineage seems the most ancient and encompasses genetically and geographically distant branches, including extremely drug resistant KZN in South Africa and LAM-RUS recently widespread across Northern Eurasia. The RD174 sublineage likely started its active spread in Brazil; its earlier branch is relatively dominated by isolates from South America and the derived one is dominated by Portuguese and South/Southeastern African isolates. The relatively most recent SIT33-sublineage is marked with enigmatic gaps and peaks across the Americas and includes South African clade F11/RD761, which likely emerged within the SIT33 subpopulation after its arrival to Africa. In addition to SIT388-sublineage, other deeply rooted, endemic LAM sublineages may exist that remain to be discovered. As a general conclusion, human mass migration appears to be the major factor that shaped the M. tuberculosis phylogeography over large time-spans.
Collapse
Affiliation(s)
- Igor Mokrousov
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia.
| | - Anna Vyazovaya
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia
| | - Tomotada Iwamoto
- Kobe Institute of Health, 4-6 Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Yuriy Skiba
- Aitkhozhin Institute of Molecular Biology and Biochemistry, 86, Dosmuhamedov str., Almaty 050012, Kazakhstan
| | - Ilva Pole
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia; Center of Tuberculosis and Lung Diseases, Riga East University Hospital, Stopinu p., Riga LV-2118, Latvia
| | - Svetlana Zhdanova
- Scientific Center of Family Health and Reproductive Problems, Irkutsk 664003, Russia
| | - Kentaro Arikawa
- Kobe Institute of Health, 4-6 Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Viacheslav Sinkov
- Scientific Center of Family Health and Reproductive Problems, Irkutsk 664003, Russia
| | - Tatiana Umpeleva
- Ural Research Institute of Phthisiopulmonology, 50 22go Partsiezda str., Ekaterinburg 620039, Russia
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G Bonchev str., Sofia 1113, Bulgaria
| | - Maria Alvarez Figueroa
- Central Research Institute for Epidemiology, 3A Novogireevskaya str., Moscow 111123, Russia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia
| | - Inta Jansone
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia
| | - Oleg Ogarkov
- Scientific Center of Family Health and Reproductive Problems, Irkutsk 664003, Russia
| | - Viacheslav Zhuravlev
- Research Institute of Phthisiopulmonology, 2-4 Ligovsky prospect, St. Petersburg 191036, Russia
| | - Olga Narvskaya
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia; Research Institute of Phthisiopulmonology, 2-4 Ligovsky prospect, St. Petersburg 191036, Russia
| |
Collapse
|
16
|
Hu Y, Mathema B, Zhao Q, Zheng X, Li D, Jiang W, Wang W, Xu B. Comparison of the socio-demographic and clinical features of pulmonary TB patients infected with sub-lineages within the W-Beijing and non-Beijing Mycobacterium tuberculosis. Tuberculosis (Edinb) 2015; 97:18-25. [PMID: 26980491 DOI: 10.1016/j.tube.2015.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Highly lethal outbreaks of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are increasing. Mycobacterium tuberculosis variant Beijing family and its members is regarded as a successful clone of M. tuberculosis that is associated with drug resistance in China. Understanding the genetic characteristics and molecular mechanism of drug resistant tuberculosis within Beijing family may help to clarify its origin and evolutionary history and the driving forces behind its emergence and current dissemination. METHODS Totally of 1222 Mycobacterium tuberculosis isolates were recovered from patients in six counties of two provinces in eastern China within 2010/2012. Strain lineage and its major subgroups were studied respectively by using Spoligotyping and MIRU-VNTR. The 1st-line drug susceptibility was analyzed by proportional method and 2nd-line drug susceptibility was determined by the HAINs MTBDRsl test. The genetic characterization of drug resistance was analyzed by sequencing the previously reported genes and loci associated with drug resistance together with the multiple genotyping including MIRU-VNTR, Spoligotyping and LSP genotyping. RESULTS Of the 1222 Mtb isolates, 298 (24.4%) were resistant to 1st-line drug and 73 (5.9%) were simultaneously resistant to INH and RIF namely MDR-TB. Respectively 23.8% of 1st-line drug resistant TB and 12.0% of the drug susceptible TB contained the mutation associated with 2nd-line drugs by HAINs test. The Spoligotyping of 1222 Mtb isolates revealed the 967 (79.1%) of the isolates belonged to the W-Beijing family. Within W-Beijing family, 78.8% MDR-TB were observed in the isolates with simultaneous deletion of RD105 and RD207, with sub-lineage 181 accounting for 75% of MDR-TB. Analysis of 24 MIRU-VNTR loci revealed that 88.2% (15/17) of MDR and extensively drug resistant (XDR) clustered isolates were sub-lineage 181. CONCLUSIONS Sublineage 181 might have the capacity to spread throughout the general community in rural China. This is the first report on the extensive association of sub-lineage 181 with MDR TB and possibly pre-XDR TB and XDR TB. It is important to monitor sublineage 181 to verify its heightened transmission and understand its importance in the global MDR-TB and XDR-TB epidemics.
Collapse
Affiliation(s)
- Yi Hu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA.
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China
| | - Xubin Zheng
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Dange Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Weili Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| | - Weibing Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China
| | - Biao Xu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China.
| |
Collapse
|
17
|
David S, Mateus ARA, Duarte EL, Albuquerque J, Portugal C, Sancho L, Lavinha J, Gonçalves G. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis. PLoS One 2015; 10:e0140625. [PMID: 26529092 PMCID: PMC4631367 DOI: 10.1371/journal.pone.0140625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/29/2015] [Indexed: 01/04/2023] Open
Abstract
Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host–pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients’ age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants.
Collapse
Affiliation(s)
- Susana David
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
- * E-mail:
| | - A. R. A. Mateus
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Elsa L. Duarte
- Escola de Ciências e Tecnologia/ Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - José Albuquerque
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
| | - Clara Portugal
- Serviço de Patologia Clínica, Hospital Fernando Fonseca, Amadora, Portugal
| | - Luísa Sancho
- Serviço de Patologia Clínica, Hospital Fernando Fonseca, Amadora, Portugal
| | - João Lavinha
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
| | - Guilherme Gonçalves
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| |
Collapse
|
18
|
Vasconcellos SEG, Acosta CC, Gomes LL, Conceição EC, Lima KV, de Araujo MI, Leite MDL, Tannure F, Caldas PCDS, Gomes HM, Santos AR, Gomgnimbou MK, Sola C, Couvin D, Rastogi N, Boechat N, Suffys PN. Strain classification of Mycobacterium tuberculosis isolates in Brazil based on genotypes obtained by spoligotyping, mycobacterial interspersed repetitive unit typing and the presence of large sequence and single nucleotide polymorphism. PLoS One 2014; 9:e107747. [PMID: 25314118 PMCID: PMC4196770 DOI: 10.1371/journal.pone.0107747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022] Open
Abstract
Rio de Janeiro is endemic for tuberculosis (TB) and presents the second largest prevalence of the disease in Brazil. Here, we present the bacterial population structure of 218 isolates of Mycobacterium tuberculosis, derived from 186 patients that were diagnosed between January 2008 and December 2009. Genotypes were generated by means of spoligotyping, 24 MIRU-VNTR typing and presence of fbpC103, RDRio and RD174. The results confirmed earlier data that predominant genotypes in Rio de Janeiro are those of the Euro American Lineages (99%). However, we observed differences between the classification by spoligotyping when comparing to that of 24 MIRU-VNTR typing, being respectively 43.6% vs. 62.4% of LAM, 34.9% vs. 9.6% of T and 18.3% vs. 21.5% of Haarlem. Among isolates classified as LAM by MIRU typing, 28.0% did not present the characteristic spoligotype profile with absence of spacers 21 to 24 and 32 to 36 and we designated these conveniently as “LAM-like”, 79.3% of these presenting the LAM-specific SNP fbpC103. The frequency of RDRio and RD174 in the LAM strains, as defined both by spoligotyping and 24 MIRU-VNTR loci, were respectively 11% and 15.4%, demonstrating that RD174 is not always a marker for LAM/RDRio strains. We conclude that, although spoligotyping alone is a tool for classification of strains of the Euro-American lineage, when combined with MIRU-VNTRs, SNPs and RD typing, it leads to a much better understanding of the bacterial population structure and phylogenetic relationships among strains of M. tuberculosis in regions with high incidence of TB.
Collapse
Affiliation(s)
- Sidra E. G. Vasconcellos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Multidisciplinary Research Laboratory, University Hospital Clementino Fraga Filho – HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chyntia Carolina Acosta
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lia Lima Gomes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Karla Valéria Lima
- Instituto Evandro Chagas, Section of Bacteriology and Mycology, Belém, Pará, Brazil
| | - Marcelo Ivens de Araujo
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria de Lourdes Leite
- Hospital Municipal Rafael de Paula Souza, Municipal Secretary of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávio Tannure
- Hospital Municipal Rafael de Paula Souza, Municipal Secretary of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Cesar de Souza Caldas
- Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Publica Sergio Arouca, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Harrison M. Gomes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Rezende Santos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michel K. Gomgnimbou
- CNRS–Université Paris–Sud, Institut de Génétique et Microbiologie–Infection Genetics Emerging Pathogens Evolution Team, Orsay, France
| | - Christophe Sola
- CNRS–Université Paris–Sud, Institut de Génétique et Microbiologie–Infection Genetics Emerging Pathogens Evolution Team, Orsay, France
| | - David Couvin
- Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Neio Boechat
- Multidisciplinary Research Laboratory, University Hospital Clementino Fraga Filho – HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Clinical Medicine, Faculty of Medicine, University Hospital Clementino Fraga Filho, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Philip Noel Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
19
|
Rindi L, Medici C, Bimbi N, Buzzigoli A, Lari N, Garzelli C. Genomic variability of Mycobacterium tuberculosis strains of the Euro-American lineage based on large sequence deletions and 15-locus MIRU-VNTR polymorphism. PLoS One 2014; 9:e107150. [PMID: 25197794 PMCID: PMC4157836 DOI: 10.1371/journal.pone.0107150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022] Open
Abstract
A sample of 260 Mycobacterium tuberculosis strains assigned to the Euro-American family was studied to identify phylogenetically informative genomic regions of difference (RD). Mutually exclusive deletions of regions RD115, RD122, RD174, RD182, RD183, RD193, RD219, RD726 and RD761 were found in 202 strains; the RDRio deletion was detected exclusively among the RD174-deleted strains. Although certain deletions were found more frequently in certain spoligotype families (i.e., deletion RD115 in T and LAM, RD174 in LAM, RD182 in Haarlem, RD219 in T and RD726 in the “Cameroon” family), the RD-defined sublineages did not specifically match with spoligotype-defined families, thus arguing against the use of spoligotyping for establishing exact phylogenetic relationships between strains. Notably, when tested for katG463/gyrA95 polymorphism, all the RD-defined sublineages belonged to Principal Genotypic Group (PGG) 2, except sublineage RD219 exclusively belonging to PGG3; the 58 Euro-American strains with no deletion were of either PGG2 or 3. A representative sample of 197 isolates was then analyzed by standard 15-locus MIRU-VNTR typing, a suitable approach to independently assess genetic relationships among the strains. Analysis of the MIRU-VNTR typing results by using a minimum spanning tree (MST) and a classical dendrogram showed groupings that were largely concordant with those obtained by RD-based analysis. Isolates of a given RD profile show, in addition to closely related MIRU-VNTR profiles, related spoligotype profiles that can serve as a basis for better spoligotype-based classification.
Collapse
Affiliation(s)
- Laura Rindi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
- * E-mail:
| | - Chiara Medici
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Nicola Bimbi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Andrea Buzzigoli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Nicoletta Lari
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Carlo Garzelli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|
20
|
Jones-López EC, Kim S, Fregona G, Marques-Rodrigues P, Hadad DJ, Molina LPD, Vinhas S, Reilly N, Moine S, Chakravorty S, Gaeddert M, Ribeiro-Rodrigues R, Salgame P, Palaci M, Alland D, Ellner JJ, Dietze R. Importance of cough and M. tuberculosis strain type as risks for increased transmission within households. PLoS One 2014; 9:e100984. [PMID: 24988000 PMCID: PMC4079704 DOI: 10.1371/journal.pone.0100984] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
RATIONALE The degree to which tuberculosis (TB) is transmitted between persons is variable. Identifying the factors that contribute to transmission could provide new opportunities for TB control. Transmission is influenced by host, bacterial and environmental factors. However, distinguishing their individual effects is problematic because measures of disease severity are tightly correlated, and assessing the virulence of Mycobacterium tuberculosis isolates is complicated by epidemiological and clinical confounders. OBJECTIVES To overcome these problems, we investigated factors potentially associated with TB transmission within households. METHODS We evaluated patients with smear-positive (≥2+), pulmonary TB and classified M. tuberculosis strains into single nucleotide polymorphism genetic cluster groups (SCG). We recorded index case, household contact, and environmental characteristics and tested contacts with tuberculin skin test (TST) and interferon-gamma release assay. Households were classified as high (≥70% of contacts with TST≥10 mm) and low (≤40%) transmission. We used logistic regression to determine independent predictors. RESULT From March 2008 to June 2012, we screened 293 TB patients to enroll 124 index cases and their 731 contacts. There were 23 low and 73 high transmission households. Index case factors associated with high transmission were severity of cough as measured by a visual analog cough scale (VACS) and the Leicester Cough Questionnaire (LCQ), and cavitation on chest radiograph. SCG 3b strains tended to be more prevalent in low (27.3%) than in high (12.5%) transmission households (p = 0.11). In adjusted models, only VACS (p<0.001) remained significant. SCG was associated with bilateral disease on chest radiograph (p = 0.002) and marginally associated with LCQ sores (p = 0.058), with group 3b patients having weaker cough. CONCLUSIONS We found differential transmission among otherwise clinically similar patients with advanced TB disease. We propose that distinct strains may cause differing patterns of cough strength and cavitation in the host leading to diverging infectiousness. Larger studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Edward C. Jones-López
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Soyeon Kim
- Department of Preventive Medicine and Community Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Geisa Fregona
- Núcleo de Doenças Infecciosas (NDI), Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | | | - David Jamil Hadad
- Núcleo de Doenças Infecciosas (NDI), Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| | | | - Solange Vinhas
- Mycobacteriology Laboratory, Núcleo de Doenças Infecciosas, UFES, Vitória, Brazil
| | - Nancy Reilly
- Division of Infectious Diseases, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Stephanie Moine
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Soumitesh Chakravorty
- Division of Infectious Diseases, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Mary Gaeddert
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Padmini Salgame
- Division of Infectious Diseases, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Moises Palaci
- Mycobacteriology Laboratory, Núcleo de Doenças Infecciosas, UFES, Vitória, Brazil
| | - David Alland
- Division of Infectious Diseases, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Jerrold J. Ellner
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas (NDI), Universidade Federal do Espírito Santo (UFES), Vitória, Brazil
| |
Collapse
|
21
|
Huber FD, Sánchez A, Gomes HM, Vasconcellos S, Massari V, Barreto A, Cesconi V, de Almeida Machado SM, Gomgnimbou MK, Sola C, Larouzé B, Suffys PN, Saad MHF. Insights into the population structure of Mycobacterium tuberculosis using spoligotyping and RDRio in a southeastern Brazilian prison unit. INFECTION GENETICS AND EVOLUTION 2014; 26:194-202. [PMID: 24907670 DOI: 10.1016/j.meegid.2014.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is still a serious public health problem, continuing to be an important threat for confined populations. We used spoligotyping to estimate the genotypic clades of Mycobacterium tuberculosis isolates from inmates in two blocks in a southeastern Brazilian prison unit, with TB incidence rate of 8185/100.000. The Latin American Mediterranean (LAM) clade is well represented in the country, and the LAM specific molecular markers, RD(Rio) large sequence polymorphism and the SNP on the Rv3062 [ligB(1212)], were used to characterize spoligotype signatures from prison isolates. Typing of RD(Rio) and ligB increase LAM clade from 66.7% (n=72/108) to 69.4% (n=75). The LAM2 SIT17 (n=23) and SIT179 (n=12) signatures comprised one third of all isolates, followed by Haarlem (11.5%, n=12), T (8.7%, n=9) and X (5.7%, n=6) clades. Strains with unknown signatures represented 5.5% (n=6), and four (3.7%) did not match any lineage. We observed RD(Rio) among 64 (59.2%) isolates, and 54 (50%) were of the LAM clade. In particular, the LAM2/RD(Rio) sub-lineage was significantly associated with clustering (p=0.02) and its frequency was higher (32%) when compared to that of the previous general TB cases in RJ (4.29%). Overall cluster frequency defined by spoligotyping/IS6110-RFLP was 62%. The two evolutionary markers helped to evaluate some LAM signature misconceptions and demonstrate that LAM2/RD(Rio) was found with high frequency, hitherto being unnoticed. All these data, allied to high clustering, imply that public health measures to minimize the escalation of TB in prison is essential, and both spoligotyping as well as RD(Rio) would be useful tools to monitor the effects of the measures with respect to M. tuberculosis lineage variation.
Collapse
Affiliation(s)
- Fé Dagmar Huber
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Alexandra Sánchez
- Tuberculosis Control Program and Coordination Management in Prison Health, State Department of Corrections, Rio de Janeiro, Brazil
| | | | - Sidra Vasconcellos
- Laboratory of Molecular Biology Applied to Mycobacteria, IOC, Fiocruz, Brazil
| | - Véronique Massari
- INSERM, UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Department of Social Epidemiology, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Department of Social Epidemiology, France
| | | | - Vanderci Cesconi
- Tuberculosis Control Program and Coordination Management in Prison Health, State Department of Corrections, Rio de Janeiro, Brazil
| | | | - Michel K Gomgnimbou
- Univ Paris-Sud, UMR8621, Orsay F-91405, France; CNRS, Orsay F-91405, France; Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Christophe Sola
- Univ Paris-Sud, UMR8621, Orsay F-91405, France; CNRS, Orsay F-91405, France
| | - Bernard Larouzé
- INSERM, UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Department of Social Epidemiology, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Department of Social Epidemiology, France; Department of Epidemiology and Quantitative Methods, ENSP/Fiocruz, Rio de Janeiro, Brazil
| | - Philip Noel Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, IOC, Fiocruz, Brazil
| | - Maria Helena Féres Saad
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute (IOC), Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Santos ACB, Gaspareto RM, Viana BHJ, Mendes NH, Pandolfi JRC, Cardoso RF, Sato DN, David SCDM, Saad MHF, Rastogi N, Leite CQF. Mycobacterium tuberculosis population structure shift in a 5-year molecular epidemiology surveillance follow-up study in a low endemic agro-industrial setting in São Paulo, Brazil. Int J Mycobacteriol 2013; 2:156-65. [PMID: 26785984 DOI: 10.1016/j.ijmyco.2013.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022] Open
Abstract
Starting with 257 outpatients attending the specialized health service for tuberculosis (TB) between 2002 and 2006 in Araraquara, an agro-industrial area with low tuberculosis (TB) incidence in São Paulo state, Brazil, positive mycobacterial cultures were obtained in 130 cases, of which 121 were confirmed as Mycobacterium tuberculosis complex. This report assesses the genetic diversity observed on 69.42% (n=84) of the clinical isolates, for which both spoligotyping and 12-loci MIRU typing data were fully interpretable. In order to monitor changes in the population dynamics of circulating M. tuberculosis strains over time, spoligotypes were compared from this study (n=84) with an earlier study from 1998 to 2001 (n=70 strains); and these two datasets from low-incidence Araraquara area were also compared with a 2-year cohort in the nearby higher-incidence São Paulo city area from 2006 to 2008 (n=93). The results obtained showed that with 58.3% (49/84) of the strains, the Latin-American-Mediterranean (LAM) was the predominant lineage in the present follow-up study; major patterns being SIT42/LAM9 11.9% (10/84), and SIT20/LAM1 10.7% (9/84). As compared with the 1998-2001 period when 40% (28/70) of the isolates belonged to the ill-defined T family, it was replaced by LAM strains between 2002 and 2006 with a visible shift to a population structure characteristic of the metropolitan São Paulo city. Further typing of the follow-up isolates from 2002 to 2006 using 12 loci MIRUs in conjunction with conventional epidemiology did not link this population structure shift to an increase in ongoing transmission or drug-resistance. Instead, it is most probably linked to movements of the important migrant community of Araraquara to higher TB incidence metropolitan areas such as São Paulo city. This is of particular concern owing to the increment in the global burden of LAM strains and the recent association of certain LAM sublineages with multidrug- and extensively drug-resistant TB. These observations suggest the need for further molecular monitoring of the TB population structure and the evaluation of transmission trends amongst migrant workers and other risk groups, such as persons in homeless shelters, in correctional facilities, drug users, and those with HIV infection, etc.
Collapse
Affiliation(s)
- Adolfo Carlos Barreto Santos
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | | | | | - Natália Helena Mendes
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - José Rodrigo Cláudio Pandolfi
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | | | - Daisy Nakamura Sato
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | | | | | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, TB & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, F97183 Abymes, Guadeloupe, France.
| | - Clarice Queico Fujimura Leite
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| |
Collapse
|
23
|
Mycobacterium tuberculosis of the RDRio genotype is the predominant cause of tuberculosis and associated with multidrug resistance in Porto Alegre City, South Brazil. J Clin Microbiol 2013; 51:1071-7. [PMID: 23325819 DOI: 10.1128/jcm.01511-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spoligotyping has shown Mycobacterium tuberculosis strains to be composed of different lineages, and some of them are not just geographically restricted but also affect specific ethnic populations and are associated with outbreaks and drug resistance. We recently described a particular subtype within the Latin American-Mediterranean (LAM) family, called RD(Rio), widespread in Brazil. Moreover, recent data also indicate that RD(Rio) is present in many countries on all continents and is associated with cavitary disease and multidrug resistance (MDR). To further explore the relationship between RD(Rio) and MDR, we conducted a study in a tuberculosis (TB) reference center responsible for the care of MDR patients in Rio Grande do Sul, the southernmost Brazilian state. From a collection of 237 clinical isolates, RD(Rio) alone was responsible for one-half of all MDR cases, including one large group composed of strains with identical IS6110-restriction fragment length polymorphism (RFLP) and having the LAM5 signature. We additionally had complete data records for 96 patients and could make comparisons between the presence and absence of RD(Rio). No difference in clinical, radiological or laboratory features was observed, but a significantly greater number of cases with MDR were described in patients infected with an RD(Rio) strain (P = 0.0015). Altogether, RD(Rio) was responsible for 38% of all TB cases. These data support and confirmed previous findings that RD(Rio) is the main agent responsible for TB in Brazil and is associated with drug resistance. Considering that RD(Rio) is a globally distributed genotype, such findings raise concern about the increase in MDR in certain human populations.
Collapse
|
24
|
Vinhas SA, Palaci M, Marques HS, Lobo de Aguiar PP, Ribeiro FK, Peres RL, Dietze R, Gomes HM, Suffys PN, Golub JE, Riley LW, Maciel ELN. Mycobacterium tuberculosis DNA fingerprint clusters and its relationship with RD(Rio) genotype in Brazil. Tuberculosis (Edinb) 2012; 93:207-12. [PMID: 23232111 DOI: 10.1016/j.tube.2012.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/29/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) strains designated as RD(Rio) are responsible for a large cluster of new cases of tuberculosis (TB) in Rio de Janeiro. They were previously shown to be associated with severe manifestations of TB. Here, we used three genotyping methods (IS6110 RFLP, spoligotyping, and multiplex PCR) to characterize RD(Rio) and non-RD(Rio) strains from the metropolitan area of Vitória, State of Espirito Santo in southeast Brazil to determine strain diversity and transmission patterns. Strains with identical IS6110 RFLP patterns were considered to belong to a cluster indicative of recent transmission. Between 2000 and 2010, we identified 5470 new TB patients and genotyped 981 Mtb strains. Of these, 376 (38%) were RD(Rio). By RFLP, 180 (48%) of 376 RD(Rio) strains and 235 (40%) of 593 non-RD(Rio) strains belonged to RFLP cluster pattern groups (p = 0.023). Simpson's diversity index based on RFLP patterns was 0.96 for RD(Rio) and 0.98 for non-RD(Rio) strains. Thus, although RD(Rio) strains appear to be comprised of a fewer number of RFLP genotypes, they represent a heterogeneous group. While TB cases caused by RD(Rio) appear more likely to be due to recent transmission than cases caused by non-RD(Rio) strains, the difference is small. These observations suggest that factors other than inherent biological characteristic of RD(Rio) lineages are more important in determining recent transmission, and that public health measures to interrupt new transmissions need to be emphasized for TB control in Vitória.
Collapse
Affiliation(s)
- Solange Alves Vinhas
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468 Maruípe, Vitória, ES, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rindi L, Lari N, Garzelli C. Large Sequence Polymorphisms of the Euro-American lineage of Mycobacterium tuberculosis: A phylogenetic reconstruction and evidence for convergent evolution in the DR locus. INFECTION GENETICS AND EVOLUTION 2012; 12:1551-7. [DOI: 10.1016/j.meegid.2012.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
|
26
|
Barbosa CDB, Lazzarini LCO, Elias AR, Leung JAM, Ribeiro SB, da Silva MG, Duarte RS, Suffys P, Gomes HM, Kritski AL, Lapa E Silva JR, Ho JL, Boéchat N. Tuberculosis caused by RDRio Mycobacterium tuberculosis is not associated with differential clinical features. Int J Tuberc Lung Dis 2012; 16:1377-82. [PMID: 22863208 DOI: 10.5588/ijtld.11.0709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We recently described the Mycobacterium tuberculosis RD(Rio) genotype, a clonally derived sublineage within the Latin American-Mediterranean (LAM) family. Genetic diversity of M. tuberculosis likely affects the clinical aspects of tuberculosis (TB). Prospective studies that address this issue are scarce and remain controversial. OBJECTIVE To determine the association of differential clinical features of pulmonary TB with the RD(Rio) M. tuberculosis etiology. METHODS Culture-proven pulmonary TB patients (n = 272) were clinically evaluated, including history, physical examination, chest X-ray and anti-human immunodeficiency virus serology. Isolates were classified as RD(Rio) or non-RD(Rio) M. tuberculosis by multiplex polymerase chain reaction and further spoligotyped. Clinical and M. tuberculosis genotype data were analyzed. RESULTS RD(Rio) M. tuberculosis caused disease in 26.5% (72/270) of all TB cases. The LAM genotype, of which RD(Rio) strains are members, was responsible for 46.0% of the TB cases. Demographic data, major signs and symptoms, radiographic presentation, microbiological features and clinical outcomes were not significantly different among patients with TB caused by RD(Rio) and non-RD(Rio) strains. CONCLUSIONS Disease caused by M. tuberculosis RD(Rio) strains was not clinically distinctive or more severe than disease caused by non-RD(Rio) strains in this series of TB patients. Larger prospective studies specifically designed to disclose differential clinical characteristics of TB caused by specific M. tuberculosis lineages are needed.
Collapse
Affiliation(s)
- C de B Barbosa
- Multidisciplinary Research Laboratory, Clementino Fraga Filho University Hospital, Institute of Thoracic Diseases, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|