1
|
Abstract
Mycobacterium abscessus pulmonary disease is highly antibiotic-resistant, and the current armamentarium of antibiotics yields poor treatment outcomes with significant drug toxicity. Macrolide susceptibility is a key prognostic factor. Optimal drug combinations, duration of therapy, and management of refractory disease are unknown. Surgical resection, performed at centers with experience in surgical management of nontuberculous mycobacterial pulmonary disease, may produce favorable outcomes in select patients. Multiple emerging therapeutic candidates hold promise for more efficacious and tolerable treatment options.
Collapse
Affiliation(s)
- Michael R Holt
- Gallipoli Medical Research Foundation, The University of Queensland, Brisbane, Queensland, Australia; Department of Thoracic Medicine, Royal Brisbane & Women's Hospital, Butterfield Street, Herston, Brisbane, Queensland, Australia.
| | - Timothy Baird
- Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia; Department of Respiratory Medicine, Sunshine Coast University Hospital, 6 Doherty St, Birtinya, Sunshine Coast, Queensland 4575, Australia
| |
Collapse
|
2
|
Levendosky K, Janisch N, Quadri LEN. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. mBio 2023; 14:e0057323. [PMID: 37350613 PMCID: PMC10470612 DOI: 10.1128/mbio.00573-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.
Collapse
Affiliation(s)
- Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
- Biochemistry Program, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
3
|
Janisch N, Levendosky K, Budell WC, Quadri LEN. Genetic Underpinnings of Carotenogenesis and Light-Induced Transcriptome Remodeling in the Opportunistic Pathogen Mycobacterium kansasii. Pathogens 2023; 12:86. [PMID: 36678434 PMCID: PMC9861118 DOI: 10.3390/pathogens12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium kansasii (Mk) causes opportunistic pulmonary infections with tuberculosis-like features. The bacterium is well known for its photochromogenicity, i.e., the production of carotenoid pigments in response to light. The genetics defining the photochromogenic phenotype of Mk has not been investigated and defined pigmentation mutants to facilitate studies on the role of carotenes in the bacterium's biology are not available thus far. In this study, we set out to identify genetic determinants involved in Mk photochromogenicity. We screened a library of ~150,000 transposon mutants for colonies with pigmentation abnormalities. The screen rendered a collection of ~200 mutants. Each of these mutants could be assigned to one of four distinct phenotypic groups. The insertion sites in the mutant collection clustered in three chromosomal regions. A combination of phenotypic analysis, sequence bioinformatics, and gene expression studies linked these regions to carotene biosynthesis, carotene degradation, and monounsaturated fatty acid biosynthesis. Furthermore, introduction of the identified carotenoid biosynthetic gene cluster into non-pigmented Mycobacterium smegmatis endowed the bacterium with photochromogenicity. The studies also led to identification of MarR-type and TetR/AcrR-type regulators controlling photochromogenicity and carotenoid breakdown, respectively. Lastly, the work presented also provides a first insight into the Mk transcriptome changes in response to light.
Collapse
Affiliation(s)
- Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - William C. Budell
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Biochemistry Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
4
|
Li Y, Liu C, Ma A, He W, Qiu Q, Zhao Y, Li Y. Identification and drug susceptibility testing of the subspecies of Mycobacterium avium complex clinical isolates in mainland China. J Glob Antimicrob Resist 2022; 31:90-97. [PMID: 35660663 DOI: 10.1016/j.jgar.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/25/2021] [Accepted: 05/29/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The Mycobacterium avium complex (MAC), comprising a series of subspecies, has a worldwide distribution, with differences in drug susceptibility among subspecies. This study aimed to assess the composition of MAC and susceptibility differences among subspecies in mainland China. METHODS A total of 287 MAC clinical strains were included in the study. Multitarget sequences were applied to accurately identify subspecies, and a microdilution method was used to evaluate minimum inhibitory concentrations (MICs) among subspecies using Sensititre SLOMYCO plates. RESULTS Mycobacterium intracellular (N = 169), Mycobacterium avium (N = 52), Mycobacterium chimaera (N = 22), Mycobacterium marseillense (N = 25), Mycobacterium colombiense (N = 14), Mycobacterium yongonense (N = 4), Mycobacterium vulneris (N = 3) and Mycobacterium timonense (N = 2) were isolated from MAC. Clarithromycin, amikacin and rifabutin showed lower MIC50 and MIC90 values than other drugs, and the resistance rates of clarithromycin, amikacin, linezolid and moxifloxacin were 6.3%, 10.5%, 51.9% and 46.3%, respectively. The resistance rates of clarithromycin and moxifloxacin in the initial treatment group were significantly lower than those in the retreatment group (4.09% vs. 12.94%; 30.41% vs. 75.29%; P < 0.05). Drug susceptibility differences were observed in clarithromycin and moxifloxacin among the five major subspecies (P < 0.05); however, those statistically significant differences disappeared when MACs were divided into two groups according to previous anti-tuberculosis (anti-TB) treatment history. CONCLUSION This study revealed that MAC, primarily comprising M. intracellulare, was susceptible to clarithromycin, amikacin and rifabutin. Drug susceptibility among subspecies did not exhibit intrinsic differences in our study. Previous anti-TB treatment patients are more resistant to drugs; thus, attention should be given to those patients in the clinic.
Collapse
Affiliation(s)
- Yuanchun Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chunfa Liu
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aijing Ma
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wencong He
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Qiu
- Research Institute of Tuberculosis, Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Yanming Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Gramegna A, Lombardi A, Lorè NI, Amati F, Barone I, Azzarà C, Cirillo D, Aliberti S, Gori A, Blasi F. Innate and Adaptive Lymphocytes in Non-Tuberculous Mycobacteria Lung Disease: A Review. Front Immunol 2022; 13:927049. [PMID: 35837393 PMCID: PMC9273994 DOI: 10.3389/fimmu.2022.927049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous environmental microorganisms capable of a wide range of infections that primarily involve the lymphatic system and the lower respiratory tract. In recent years, cases of lung infection sustained by NTM have been steadily increasing, due mainly to the ageing of the population with underlying lung disease, the enlargement of the cohort of patients undergoing immunosuppressive medications and the improvement in microbiologic diagnostic techniques. However, only a small proportion of individuals at risk ultimately develop the disease due to reasons that are not fully understood. A better understanding of the pathophysiology of NTM pulmonary disease is the key to the development of better diagnostic tools and therapeutic targets for anti-mycobacterial therapy. In this review, we cover the various types of interactions between NTM and lymphoid effectors of innate and adaptive immunity. We also give a brief look into the mechanism of immune exhaustion, a phenomenon of immune dysfunction originally reported for chronic viral infections and cancer, but recently also observed in the setting of mycobacterial diseases. We try to set the scene to postulate that a better knowledge of immune exhaustion can play a crucial role in establishing prognostic/predictive factors and enabling a broader investigation of immune-modulatory drugs in the experimental treatment of NTM pulmonary disease.
Collapse
Affiliation(s)
- Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Andrea Gramegna,
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola I. Lorè
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Amati
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ivan Barone
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Azzarà
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Aliberti
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Andrea Gori
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
|
7
|
van der Laan R, Snabilié A, Obradovic M. Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: innovations in drug development and delivery. Respir Res 2022; 23:376. [PMID: 36566170 PMCID: PMC9789522 DOI: 10.1186/s12931-022-02299-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) poses a substantial patient, healthcare, and economic burden. Managing NTM-PD remains challenging, and factors contributing to this include morphological, species, and patient characteristics as well as the treatment itself. This narrative review focusses on the challenges of NTM-PD from the perspective of the organism and the disease process. Morphological characteristics of non-tuberculous mycobacteria (NTM), antimicrobial resistance mechanisms, and an ability to evade host defences reduce NTM susceptibility to many antibiotics. Resistance to antibiotics, particularly macrolides, is of concern, and is associated with high mortality rates in patients with NTM-PD. New therapies are desperately needed to overcome these hurdles and improve treatment outcomes in NTM-PD. Amikacin liposome inhalation suspension (ALIS) is the first therapy specifically developed to treat refractory NTM-PD caused by Mycobacterium avium complex (MAC) and is approved in the US, EU and Japan. It provides targeted delivery to the lung and effective penetration of macrophages and biofilms and has demonstrated efficacy in treating refractory MAC pulmonary disease (MAC-PD) in the Phase III CONVERT study. Several other therapies are currently being developed including vaccination, bacteriophage therapy, and optimising host defences. Newly developed antibiotics have shown potential activity against NTM-PD and include benzimidazole, delamanid, and pretomanid. Antibiotics commonly used to treat other infections have also been repurposed for NTM-PD, including clofazimine and bedaquiline. Data from larger-scale studies are needed to determine the potential of many of these therapies for treating NTM-PD.
Collapse
|
8
|
Liu G, Yu X, Luo J, Hu Y, Dong L, Jiang G, Huo F, Wang F, Liang Q, Huang H. Mycobacterium vicinigordonae sp. nov., a slow-growing scotochromogenic species isolated from sputum. Int J Syst Evol Microbiol 2021; 71. [PMID: 33974531 DOI: 10.1099/ijsem.0.004796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A slow-growing, scotochromogenic mycobacterial strain (24T) was isolated from the sputum of a Chinese male human. Phylogenetic analysis using the 16S rRNA gene assigned strain 24T to the Mycobacterium gordonae complex, which includes Mycobacterium gordonae and Mycobacterium paragordonae. The phenotypic characteristics, unique mycolic acid profile and the results of phylogenetic analysis based on hsp65 and rpoB sequences strongly supported the taxonomic status of strain 24T as a representative of a species distinct from the other members of the M. gordonae complex. The genomic G+C content of strain 24T was 65.40mol%. Genomic comparisons showed that strain 24T and M. gordonae ATCC 14470T had an average nucleotide identity (ANI) value of 81.00 % and a DNA-DNA hybridization (DDH) value of 22.80 %, while the ANI and DDH values between strain 24Tand M. paragordonae 49 061T were 80.98 and 22.80 %, respectively. In terms of phylogenetic, phenotypic and chemotaxonomic features, strain 24T is distinguishable from its closest phylogenetic relatives and represents a novel species of the genus Mycobacterium, therefore the name Mycobacterium vicinigordonae sp. nov. is proposed. The type strain is 24T (=CMCC 93559T=DSM 105979T).
Collapse
Affiliation(s)
- Guan Liu
- Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan 430030, PR China.,National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Jingjing Luo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Yanjie Hu
- Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan 430030, PR China.,National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Lingling Dong
- Wuhan Pulmonary Hospital, Wuhan Institution of Tuberculosis Control, Wuhan 430030, PR China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Qian Liang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, PR China
| |
Collapse
|
9
|
Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, Böttger EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin Infect Dis 2021; 71:905-913. [PMID: 32797222 DOI: 10.1093/cid/ciaa1125] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.
Collapse
Affiliation(s)
- Charles L Daley
- Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jonathan M Iaccarino
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Clinical Tuberculosis Unit, Borstel, Germany.,Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany.,Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Emmanuelle Cambau
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, APHP -Hôpital Lariboisière, Bacteriology; Inserm, University Paris Diderot, IAME UMR1137, Paris, France
| | - Richard J Wallace
- Mycobacteria/Nocardia Laboratory, Department of Microbiology, The University of Texas Health Science Center, Tyler, Texas, USA
| | - Claire Andrejak
- Respiratory and Intensive Care Unit, University Hospital Amiens, Amiens, France.,EA 4294, AGIR, Jules Verne Picardy University, Amiens, France
| | - Erik C Böttger
- Institute of Medical Microbiology, National Reference Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Jan Brozek
- Department of Clinical Epidemiology & Biostatistics, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - David E Griffith
- Pulmonary Infectious Disease Section, University of Texas Health Science Center, Tyler, Texas, USA
| | - Lorenzo Guglielmetti
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, APHP -Hôpital Lariboisière, Bacteriology; Inserm, University Paris Diderot, IAME UMR1137, Paris, France.,Team E13 (Bactériologie), Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Université Pierre et Marie Curie, Université Paris 06, Centre de Recherche 7, INSERM, IAME UMR1137, Paris, France
| | - Gwen A Huitt
- Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado, USA
| | | | - Theodore K Marras
- Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Miguel Santin
- Service of Infectious Diseases, Bellvitge University Hospital-IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jason E Stout
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jakko van Ingen
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk Wagner
- Division of Infectious Diseases, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin L Winthrop
- Divisions of Infectious Diseases, Schools of Public Health and Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, Böttger EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin Infect Dis 2020; 71:e1-e36. [PMID: 32628747 PMCID: PMC7768748 DOI: 10.1093/cid/ciaa241] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.
Collapse
Affiliation(s)
- Charles L Daley
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jonathan M Iaccarino
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Clinical Tuberculosis Unit, Borstel, Germany
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Emmanuelle Cambau
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, APHP -Hôpital Lariboisière, Bacteriology; Inserm, University Paris Diderot, IAME UMR1137, Paris, France
| | - Richard J Wallace
- Mycobacteria/Nocardia Laboratory, Department of Microbiology, The University of Texas Health Science Center, Tyler, Texas, USA
| | - Claire Andrejak
- Respiratory and Intensive Care Unit, University Hospital Amiens, Amiens, France
- EA 4294, AGIR, Jules Verne Picardy University, Amiens, France
| | - Erik C Böttger
- Institute of Medical Microbiology, National Reference Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Jan Brozek
- Department of Clinical Epidemiology & Biostatistics, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - David E Griffith
- Pulmonary Infectious Disease Section, University of Texas Health Science Center, Tyler, Texas, USA
| | - Lorenzo Guglielmetti
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, APHP -Hôpital Lariboisière, Bacteriology; Inserm, University Paris Diderot, IAME UMR1137, Paris, France
- Team E13 (Bactériologie), Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Université Pierre et Marie Curie, Université Paris 06, Centre de Recherche 7, INSERM, IAME UMR1137, Paris, France
| | - Gwen A Huitt
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado, USA
| | | | - Theodore K Marras
- Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Miguel Santin
- Service of Infectious Diseases, Bellvitge University Hospital-IDIBELL, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Jason E Stout
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jakko van Ingen
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk Wagner
- Division of Infectious Diseases, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin L Winthrop
- Divisions of Infectious Diseases, Schools of Public Health and Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, Böttger EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 2020; 56:2000535. [PMID: 32636299 PMCID: PMC8375621 DOI: 10.1183/13993003.00535-2020] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.
Collapse
Affiliation(s)
- Charles L. Daley
- National Jewish Health and University of Colorado Health
Sciences, Denver, Colorado, USA
| | | | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center
Borstel, Borstel, Germany, German Center for Infection Research (DZIF), Respiratory
Medicine & International Health, University of Lübeck, Lübeck,
Germany, and Dept of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Emmanuelle Cambau
- National Reference Center for Mycobacteria and
Antimycobacterial Resistance, APHP -Hôpital Lariboisière,
Bacteriology; Inserm University Paris Diderot, IAME UMR1137, Bacteriology, Paris,
France
| | - Richard J. Wallace
- Mycobacteria/Nocardia Laboratory, Dept of Microbiology, The
University of Texas Health Science Center, Tyler, TX, USA
| | - Claire Andrejak
- Respiratory and Intensive Care Unit, University Hospital
Amiens, Amiens, France and EA 4294, AGIR, Jules Verne Picardy University, Amiens,
France
| | - Erik C. Böttger
- Institute of Medical Microbiology, National Reference
Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Jan Brozek
- Department of Clinical Epidemiology & Biostatistics,
McMaster University Health Sciences Centre, 1200 Main Street West, Hamilton, ON L8N
3Z5 Canada
| | - David E. Griffith
- Pulmonary Infectious Disease Section, University of Texas
Health Science Center, Tyler, TX, USA
| | - Lorenzo Guglielmetti
- National Reference Center for Mycobacteria and
Antimycobacterial Resistance, APHP -Hôpital Lariboisière,
Bacteriology; Inserm University Paris Diderot, IAME UMR1137, Bacteriology, Paris,
France
- Team E13 (Bactériologie), Centre
d’Immunologie et des Maladies Infectieuses, Sorbonne Université,
Université Pierre et Marie Curie, Université Paris 06, Centre de
Recherche 7, INSERM, IAME UMR1137, Paris, Francis
| | - Gwen A. Huitt
- Library and Knowledge Services, National Jewish Health,
Denver, Colorado, USA
| | - Shandra L. Knight
- Library and Knowledge Services, National Jewish Health,
Denver, Colorado, USA
| | | | - Theodore K. Marras
- Dept of Medicine, University of Toronto and University
Health Network, Toronto, ON, Canada
| | - Kenneth N. Olivier
- Pulmonary Branch, National Heart, Lung and Blood
Institute, Bethesda, MD, USA
| | - Miguel Santin
- Service of Infectious Diseases, Bellvitge University
Hospital-IDIBELL, University of Barcelona, L’Hospitalet de Llobregat,
Barcelona, Spain
| | - Jason E. Stout
- Division of Infectious Diseases and International Health,
Duke University Medical Center, Durham, NC, USA
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele
Scientific Institute, Milan, Italy
| | - Jakko van Ingen
- Radboud Center for Infectious Diseases, Dept of Medical
Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk Wagner
- Division of Infectious Diseases, Dept of Medicine II,
Medical Center - University of Freiburg, Faculty of Medicine, University of
Freiburg, Freiburg, Germany
| | - Kevin L. Winthrop
- Divisions of Infectious Diseases, Schools of Public
Health and Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
12
|
Shulha JA, Escalante P, Wilson JW. Pharmacotherapy Approaches in Nontuberculous Mycobacteria Infections. Mayo Clin Proc 2019; 94:1567-1581. [PMID: 31160063 DOI: 10.1016/j.mayocp.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 01/29/2023]
Abstract
Nontuberculous mycobacteria (NTM) comprise a heterogeneous group of organisms, with only a small subset known to cause disease in humans. Although NTM infection is not a reportable disease, both the increasing clinical recognition and recent advancements in laboratory diagnostic capabilities of NTM infections in immunocompromised and immunocompetent patients are rapidly evolving. We reviewed antimicrobial agents used to treat the most frequently encountered NTM infections and examined optimized drug dosing strategies, toxicity profiles, drug-drug interactions, and the role of therapeutic drug monitoring. Antimicrobial susceptibility testing and patient monitoring on therapy were also examined. We used PubMed to review the published literature on the management of select NTM pathogens, the common syndromes encountered since 2000, and select pharmacokinetic principles of select antimicrobial agents used since 1990. We included select clinical trials, systematic reviews, published guidelines, and observational studies when applicable. The prolonged duration and the necessity for combination therapy for most forms of NTM disease can be problematic for many patients. A multidisciplinary care team that includes pharmacy engagement may help increase rates of optimal patient tolerability and successful treatment completion.
Collapse
Affiliation(s)
| | - Patricio Escalante
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - John W Wilson
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
13
|
Cowman S, van Ingen J, Griffith DE, Loebinger MR. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J 2019; 54:13993003.00250-2019. [PMID: 31221809 DOI: 10.1183/13993003.00250-2019] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 02/03/2023]
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a challenging infection which is becoming increasingly prevalent, particularly in the elderly, for reasons which are unknown. While underlying lung disease is a well-established risk factor for NTM-PD, it may also occur in apparently healthy individuals. No single common genetic or immunological defect has been identified in this group, and it is likely that multiple pathways contribute towards host susceptibility to NTM-PD which further interact with environmental and microbiological factors leading to the development of disease.The diagnosis of NTM-PD relies on the integration of clinical, radiological and microbiological results. The clinical course of NTM-PD is heterogeneous, with some patients remaining stable without the need for treatment and others developing refractory disease associated with considerable mortality and morbidity. Treatment regimens are based on the identity of the isolated species, drug sensitivity testing (for some agents) and the severity of disease. Multiple antibiotics are typically required for prolonged periods of time and treatment is frequently poorly tolerated. Surgery may be beneficial in selected cases. In some circumstances cure may not be attainable and there is a pressing need for better regimens to treat refractory and drug-resistant NTM-PD.This review summarises current knowledge on the epidemiology, aetiology and diagnosis of NTM-PD and discusses the treatment of two of the most clinically significant species, the M. avium and M. abscessus complexes, with a focus on refractory disease and novel therapies.
Collapse
Affiliation(s)
- Steven Cowman
- Host Defence Unit, Royal Brompton Hospital, London, UK.,Imperial College, London, UK
| | - Jakko van Ingen
- Dept of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David E Griffith
- Dept of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK .,Imperial College, London, UK
| |
Collapse
|
14
|
Zweijpfenning S, Hoefsloot W, van Ingen J. Nontuberculous mycobacteria. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10022717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Huh HJ, Kim SY, Jhun BW, Shin SJ, Koh WJ. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. INFECTION GENETICS AND EVOLUTION 2018; 72:169-182. [PMID: 30315892 DOI: 10.1016/j.meegid.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/31/2023]
Abstract
Accumulating evidence suggests that human infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, indicating that NTM disease is no longer uncommon in many countries. As a result of an increasing emphasis on the importance of differential identification of NTM species, several molecular tools have recently been introduced in clinical and experimental settings. These advances have led to a much better understanding of the diversity of NTM species with regard to clinical aspects and the potential factors responsible for drug resistance that influence the different outcomes of NTM disease. In this paper, we review currently available molecular diagnostics for identification and differentiation of NTM species by summarizing data from recently applied methods, including commercially available assays, and their relevant strengths and weaknesses. We also highlight drug resistance-associated genes in clinically important NTM species. Understanding the basis for different treatment outcomes with different causative species and drug-resistance mechanisms will eventually improve current treatment regimens and facilitate the development of better control measures for NTM diseases.
Collapse
Affiliation(s)
- Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Kalvisa A, Tsirogiannis C, Silamikelis I, Skenders G, Broka L, Zirnitis A, Jansone I, Ranka R. MIRU-VNTR genotype diversity and indications of homoplasy in M. avium strains isolated from humans and slaughter pigs in Latvia. INFECTION GENETICS AND EVOLUTION 2016; 43:15-21. [PMID: 27178993 DOI: 10.1016/j.meegid.2016.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
Diseases which are caused by non-tuberculous mycobacteria (NTM) are an increasing problem in the developed countries. In Latvia, one of the most clinically important members of NTM is Mycobacterium avium (M. avium), an opportunistic pathogen which has been isolated from several lung disease patients and tissue samples of slaughter pigs. This study was designed to characterize the genetic diversity of the M. avium isolates in Latvia and to compare the distribution of genotypic patterns among humans and pigs. Eleven (Hall and Salipante, 2010) clinical M. avium samples, isolated from patients of Center of Tuberculosis and Lung Diseases (years 2003-2010), and 32 isolates from pig necrotic mesenterial lymph nodes in different regions (years 2003-2007) were analyzed. The majority (42 of 43) of samples were identified as M. avium subsp. hominissuis; one porcine isolate belonged to M. avium subsp. avium. MIRU-VNTR genotyping revealed 13 distinct genotypes, among which nine genotype patterns, including M. avium subsp. avium isolate, were newly identified. IS1245 RFLP fingerprinting of 25 M. avium subsp. hominissuis samples yielded 17 different IS1245 RFLP patterns, allowing an efficient discrimination of isolates. Clusters of identical RFLP profiles were observed within host species, geographical locations and time frame of several years. Additional in silico analysis on simulated MIRU-VNTR genotype population datasets showed that the MIRU-VNTR pattern similarity could partly arise due to probabilistic increase of acquiring homoplasy among subpopulations, thus the similar MIRU-VNTR profiles of M. avium strains even in close geographical proximity should be interpreted with caution.
Collapse
Affiliation(s)
- Adrija Kalvisa
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia; Riga Stradins University (RSU), Riga, Latvia
| | | | | | - Girts Skenders
- Riga East University Hospital, Tuberculosis and Lung Diseases Center, Latvia
| | - Lonija Broka
- Riga East University Hospital, Tuberculosis and Lung Diseases Center, Latvia
| | - Agris Zirnitis
- Department of Veterinary Medicine, Latvia University of Agriculture, Jelgava, Latvia
| | - Inta Jansone
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia; Riga Stradins University (RSU), Riga, Latvia.
| |
Collapse
|
17
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 993] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
18
|
Porvaznik I, Solovič I, Mokrý J. Non-Tuberculous Mycobacteria: Classification, Diagnostics, and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 944:19-25. [PMID: 27826888 DOI: 10.1007/5584_2016_45] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Non-tuberculous mycobacteria (NTM) are species other than those belonging to the Mycobacterium tuberculosis complex and do not cause leprosy. NTM are generally free-living organisms that are ubiquitous in the environment. There have been more than 140 NTM species identified to-date. They can cause a wide range of infections, with pulmonary infections being the most frequent (65-90 %). There is growing evidence that the incidence of NTM lung diseases and associated hospitalizations are on the rise, mainly in regions with a low prevalence of tuberculosis. A crucial clinical problem remains the evaluation of NTM significance in relation to the disease, especially in regard to the colonization of the respiratory tract in patients with residual lesions after tuberculosis or bronchiectasis. Clinical and radiographic pictures of mycobacteriosis, as well as therapy, have often similarities to those of tuberculosis. The treatment regimen should be individualized. In addition to antituberculotics, antibiotics are used more frequently. The most common mycobacteria causing lung disease in Slovakia are Mycobacterium avium and Mycobacterium abscessus.
Collapse
Affiliation(s)
- I Porvaznik
- Department of Pulmonary Diseases and Thoracic Surgery, National Institute for Tuberculosis, 1 Vysne Hagy, 05984, Vysoké Tatry, Slovakia. .,Division of Respirology and Department of Pharmacology, Biomedical Center Martin, Jessenius School of Medicine in Martin, Comenius University, Bratislava, Martin, Slovakia.
| | - I Solovič
- Department of Pulmonary Diseases and Thoracic Surgery, National Institute for Tuberculosis, 1 Vysne Hagy, 05984, Vysoké Tatry, Slovakia
| | - J Mokrý
- Division of Respirology and Department of Pharmacology, Biomedical Center Martin, Jessenius School of Medicine in Martin, Comenius University, Bratislava, Martin, Slovakia
| |
Collapse
|
19
|
van Ingen J, Kuijper EJ. Drug susceptibility testing of nontuberculous mycobacteria. Future Microbiol 2015; 9:1095-110. [PMID: 25340838 DOI: 10.2217/fmb.14.60] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diseases caused by nontuberculous mycobacteria are emerging in many settings. With an increased number of patients needing treatment, the role of drug susceptibility testing is again in the spotlight. This articles covers the history and methodology of drug susceptibility tests for nontuberculous mycobacteria, but focuses on the correlations between in vitro drug susceptibility, pharmacokinetics and in vivo outcomes of treatment. Among slow-growing nontuberculous mycobacteria, clear correlations have been established for macrolides and amikacin (Mycobacterium avium complex) and for rifampicin (Mycobacterium kansasii). Among rapid-growing mycobacteria, correlations have been established in extrapulmonary disease for aminoglycosides, cefoxitin and co-trimoxazole. In pulmonary disease, correlations are less clear and outcomes of treatment are generally poor, especially for Mycobacterium abscessus. The clinical significance of inducible resistance to macrolides among rapid growers is an important topic. The true role of drug susceptibility testing for nontuberculous mycobacteria still needs to be addressed, preferably within clinical trials.
Collapse
Affiliation(s)
- Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | | |
Collapse
|
20
|
Griffith DE. Mycobacterium abscessus subsp abscessus lung disease: 'trouble ahead, trouble behind…'. F1000PRIME REPORTS 2014; 6:107. [PMID: 25580261 PMCID: PMC4229719 DOI: 10.12703/p6-107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mycobacterium abscessus subsp abscessus is the most common respiratory pathogen among the rapidly growing non-tuberculous mycobacteria (NTM) and is also the most feared due to its well-deserved reputation for being refractory to antibiotic therapy. M. abscessus subsp abscessus has multiple innate antibiotic resistance mechanisms, but the most important one described so far is an inducible erythromycin methylase (erm) gene. M. abscessus subsp abscessus isolates may appear macrolide susceptible on initial in vitro testing but become macrolide resistant after exposure to macrolide. It is therefore very important to test clinically significant M. abscessus subsp abscessus isolates for erm gene activity. Remarkably, controversy still exists about the taxonomy and nomenclature of M. abscessus subspecies including subsp abscessus, subsp massiliense and subsp bolletii. Identification of these subspecies is not moot as M. abscessus subsp massiliense does not have an active erm gene resulting in both in vitro and in vivo susceptibility to macrolide. It is imperative from the clinician's perspective that mycobacterial laboratories correctly and rapidly identify M. abscessus to the subspecies level. Unfortunately, there are no reliably or predictably effective treatment regimens for M. abscessus subsp abscessus and better, more effective antimicrobial agents are badly needed. Surgical resection of involved lung tissue as an adjunct to antibiotic therapy is beneficial in selected patients but cannot be broadly applied. Overall, M. abscessus subsp abscessus remains a formidable respiratory mycobacterial pathogen, one that we are only beginning to understand microbiologically and one that as yet consistently evades our best efforts at successful therapeutic outcomes. ‘trouble ahead, trouble behind, and you know that notion just crossed my mind’. Casey Jones, Grateful Dead (1970)
Collapse
|
21
|
Yoo H, Jeon K, Kim SY, Jeong BH, Park HY, Ki CS, Lee NY, Shin SJ, Koh WJ. Clinical significance of Mycobacterium szulgai isolates from respiratory specimens. ACTA ACUST UNITED AC 2013; 46:169-74. [PMID: 24359518 DOI: 10.3109/00365548.2013.861607] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The clinical relevance of Mycobacterium szulgai respiratory isolates has been controversial. The aim of this study was to determine the clinical significance of M. szulgai isolates from respiratory specimens and to identify the clinical features and outcomes of M. szulgai lung disease. METHODS We reviewed the medical records of 30 patients from whom M. szulgai was isolated between 2001 and 2010 at the Samsung Medical Center (Seoul, Korea). RESULTS Of the 30 patients, 13 (43%) met the American Thoracic Society diagnostic criteria and were thus likely to have true M. szulgai lung disease. Approximately 57% (17/30) of M. szulgai isolates were recovered only once from patients with other pulmonary diseases, such as pulmonary tuberculosis and other non-tuberculous mycobacterial lung diseases. The 13 patients with M. szulgai lung disease included 12 men (92%), and the median age was 63 y. Among them, 7 (54%) were current smokers and 7 (54%) had a history of previous treatment for tuberculosis. Eight (62%) patients had the fibrocavitary form of M. szulgai lung disease. Nine (69%) patients received anti-mycobacterial treatment for a median duration of 8 months. Conversion to negative cultures was documented in all patients. There was no recurrence or disease-related mortality. CONCLUSIONS Because the isolated M. szulgai from respiratory specimens could be regarded as pathogenic in less than 50% of cases, strict adherence to the recommended diagnostic criteria of non-tuberculous mycobacterial lung disease is essential.
Collapse
Affiliation(s)
- Hongseok Yoo
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsai SH, Shen GH, Lin CH, Liau JR, Lai HC, Hu ST. Mab_3168c, a putative acetyltransferase, enhances adherence, intracellular survival and antimicrobial resistance of Mycobacterium abscessus. PLoS One 2013; 8:e67563. [PMID: 23840740 PMCID: PMC3695912 DOI: 10.1371/journal.pone.0067563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/22/2013] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium. It can cause diseases in both immunosuppressed and immunocompetent patients and is highly resistant to multiple antimicrobial agents. M. abscessus displays two different colony morphology types: smooth and rough morphotypes. Cells with a rough morphotype are more virulent. The purpose of this study was to identify genes responsible for M. abscessus morphotype switching. With transposon mutagenesis, a mutant with a Tn5 inserted into the promoter region of the mab_3168c gene was found to switch its colonies from a rough to a smooth morphotype. This mutant had a higher sliding motility but a lower ability to form biofilms, aggregate in culture, and survive inside macrophages. Results of bioinformatic analyses suggest that the putative Mab_3168c protein is a member of the GCN5-related N-acetyltransferase superfamily. This prediction was supported by the demonstration that the mab_3168c gene conferred M. abscessus and M. smegmatis cells resistance to amikacin. The multiple roles of mab_3168c suggest that it could be a potential target for development of therapeutic regimens to treat diseases caused by M. abscessus.
Collapse
Affiliation(s)
- Sheng-Hui Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Gwan-Han Shen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Veterans General Hospital, Taichung, Taiwan, R.O.C.
- Institute of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C.
- Institute of Nursing Care, Hungkuang University, Taichung, Taiwan, R.O.C.
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Jiue-Ru Liau
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, R.O.C.
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Taoyuan, Taiwan, R.O.C.
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, R.O.C.
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
- * E-mail:
| |
Collapse
|
23
|
van Ingen J, Hoefsloot W, Mouton JW, Boeree MJ, van Soolingen D. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance. Int J Antimicrob Agents 2013; 42:80-2. [PMID: 23664674 DOI: 10.1016/j.ijantimicag.2013.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/16/2013] [Accepted: 03/24/2013] [Indexed: 10/26/2022]
Abstract
A key issue in the treatment of disease caused by slow-growing nontuberculous mycobacteria is the limited association between in vitro minimum inhibitory concentrations (MICs) of rifampicin and ethambutol alone and the in vivo outcome of treatment with these drugs. Combined susceptibility testing to rifampicin and ethambutol could provide a more realistic view of the efficacy of these drugs. In this study, Mycobacterium avium (n = 5), Mycobacterium chimaera (n = 6), Mycobacterium intracellulare (n = 4), Mycobacterium xenopi (n = 4), Mycobacterium malmoense (n = 3) and Mycobacterium simiae (n = 2) clinical isolates were selected and the MICs of rifampicin and ethambutol alone and in combination were measured using the Middlebrook 7H10 agar dilution method. Synergy was defined as a fractional inhibitory concentration index ≤ 0.5. Rifampicin and ethambutol showed synergistic activity against the majority of M. avium (4/5), M. chimaera (5/6) and M. intracellulare (3/4) isolates and 1 of 2 eligible M. malmoense isolates. No synergistic activity was measured against M. xenopi and M. simiae. Synergy was neither universal for all species nor for all isolates of one species; it thus needs to be tested for rather than assumed. Even if this synergy exists in vivo, it is questionable whether the MICs to the combined drugs can be overcome by the drug exposure attained by current regimens at the recommended dosages. New dosing strategies for rifampicin and ethambutol should be studied to increase the exposure to these drugs and thus maximise their impact.
Collapse
Affiliation(s)
- Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Zakham F, Aouane O, Ussery D, Benjouad A, Ennaji MM. Computational genomics-proteomics and Phylogeny analysis of twenty one mycobacterial genomes (Tuberculosis & non Tuberculosis strains). MICROBIAL INFORMATICS AND EXPERIMENTATION 2012; 2:7. [PMID: 22929624 PMCID: PMC3504576 DOI: 10.1186/2042-5783-2-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/02/2012] [Indexed: 12/04/2022]
Abstract
Background The genus Mycobacterium comprises different species, among them the most contagious and infectious bacteria. The members of the complex Mycobacterium tuberculosis are the most virulent microorganisms that have killed human and other mammals since millennia. Additionally, with the many different mycobacterial sequences available, there is a crucial need for the visualization and the simplification of their data. In this present study, we aim to highlight a comparative genome, proteome and phylogeny analysis between twenty-one mycobacterial (Tuberculosis and non tuberculosis) strains using a set of computational and bioinformatics tools (Pan and Core genome plotting, BLAST matrix and phylogeny analysis). Results Considerably the result of pan and core genome Plotting demonstrated that less than 1250 Mycobacterium gene families are conserved across all species, and a total set of about 20,000 gene families within the Mycobacterium pan-genome of twenty one mycobacterial genomes. Viewing the BLAST matrix a high similarity was found among the species of the complex Mycobacterium tuberculosis and less conservation is found with other slow growing pathogenic mycobacteria. Phylogeny analysis based on both protein conservation, as well as rRNA clearly resolve known relationships between slow growing mycobacteria. Conclusion Mycobacteria include important pathogenic species for human and animals and the Mycobacterium tuberculosis complex is the most cause of death of the humankind. The comparative genome analysis could provide a new insight for better controlling and preventing these diseases.
Collapse
Affiliation(s)
- Fathiah Zakham
- Laboratoire de Virologie et Hygiène & Microbiologie, Faculté des Sciences et Techniques, BP 146, Mohammedia, 20650, Morocco.
| | | | | | | | | |
Collapse
|
25
|
Gryseels S, Amissah D, Durnez L, Vandelannoote K, Leirs H, De Jonckheere J, Silva MT, Portaels F, Ablordey A, Eddyani M. Amoebae as potential environmental hosts for Mycobacterium ulcerans and other mycobacteria, but doubtful actors in Buruli ulcer epidemiology. PLoS Negl Trop Dis 2012; 6:e1764. [PMID: 22880141 PMCID: PMC3413716 DOI: 10.1371/journal.pntd.0001764] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/21/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The reservoir and mode of transmission of Mycobacterium ulcerans, the causative agent of Buruli ulcer, remain unknown. Ecological, genetic and epidemiological information nonetheless suggests that M. ulcerans may reside in aquatic protozoa. METHODOLOGY/PRINCIPAL FINDINGS We experimentally infected Acanthamoeba polyphaga with M. ulcerans and found that the bacilli were phagocytised, not digested and remained viable for the duration of the experiment. Furthermore, we collected 13 water, 90 biofilm and 45 detritus samples in both Buruli ulcer endemic and non-endemic communities in Ghana, from which we cultivated amoeboid protozoa and mycobacteria. M. ulcerans was not isolated, but other mycobacteria were as frequently isolated from intracellular as from extracellular sources, suggesting that they commonly infect amoebae in nature. We screened the samples as well as the amoeba cultures for the M. ulcerans markers IS2404, IS2606 and KR-B. IS2404 was detected in 2% of the environmental samples and in 4% of the amoeba cultures. The IS2404 positive amoeba cultures included up to 5 different protozoan species, and originated both from Buruli ulcer endemic and non-endemic communities. CONCLUSIONS/SIGNIFICANCE This is the first report of experimental infection of amoebae with M. ulcerans and of the detection of the marker IS2404 in amoeba cultures isolated from the environment. We conclude that amoeba are potential natural hosts for M. ulcerans, yet remain sceptical about their implication in the transmission of M. ulcerans to humans and their importance in the epidemiology of Buruli ulcer.
Collapse
Affiliation(s)
- Sophie Gryseels
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|