1
|
Tran TD, Kasemsuwan S, Sukmak M, Phimpraphai W, Prarakamawongsa T, Pham LT, Hoang TB, Nguyen PT, Nguyen TM, Truong MV, Dao TP, Padungtod P. Field and laboratory investigation of highly pathogenic avian influenza H5N6 and H5N8 in Quang Ninh province, Vietnam, 2020 to 2021. J Vet Sci 2024; 25:e20. [PMID: 38568822 PMCID: PMC10990907 DOI: 10.4142/jvs.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Avian influenza (AI) is a contagious disease that causes illness and death in poultry and humans. High pathogenicity AI (HPAI) H5N6 outbreaks commonly occur in Quang Ninh province bordering China. In June 2021, the first HPAI H5N8 outbreak occurred at a Quang Ninh chicken farm. OBJECTIVES This study examined the risk factors associated with HPAI H5N6 and H5N8 outbreaks in Quang Ninh. METHODS A retrospective case-control study was conducted in Quang Ninh from Nov 2021 to Jan 2022. The cases were households with susceptible poultry with two or more clinical signs and tested positive by real-time reverse transcription polymerase chain reaction. The controls were households in the same village as the cases but did not show clinical symptoms of the disease. Logistic regression models were constructed to assess the risk factors associated with HPAI outbreaks at the household level. RESULTS There were 38 cases with H5N6 clade 2.3.4.4h viruses (n = 35) and H5N8 clade 2.3.4.4b viruses (n = 3). Compared to the 112 controls, raising poultry in uncovered or partially covered ponds (odds ratio [OR], 7.52; 95% confidence interval [CI], 1.44-39.27), poultry traders visiting the farm (OR, 8.66; 95% CI, 2.7-27.69), farms with 50-2,000 birds (OR, 3.00; 95% CI, 1.06-8-51), and farms with ≥ 2,000 birds (OR, 11.35; 95% CI, 3.07-41.94) were significantly associated with HPAI outbreaks. CONCLUSIONS Combining biosecurity measures, such as restricting visitor entry and vaccination in farms with more than 50 birds, can enhance the control and prevention of HPAI in Quang Ninh and its spread across borders.
Collapse
Affiliation(s)
- Trong Duc Tran
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam.
| | - Suwicha Kasemsuwan
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Manakorn Sukmak
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | | | - Tippawon Prarakamawongsa
- Department of Livestock Development, Bureau of Disease Control and Veterinary Service, Bangkok 10400, Thailand
| | - Long Thanh Pham
- Epidemiology Division, Department of Animal Health, Hanoi 100000, Vietnam
| | - Tuyet Bach Hoang
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Phuong Thi Nguyen
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Thang Minh Nguyen
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Minh Van Truong
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Tuan Pham Dao
- Department of Animal Health, Regional Animal Health Office Number 2, Haiphong 180000, Vietnam
| | - Pawin Padungtod
- Emergency Center for Transboundary Animal Diseases, FAO Country Office for Vietnam, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Quantifying within-host diversity of H5N1 influenza viruses in humans and poultry in Cambodia. PLoS Pathog 2020; 16:e1008191. [PMID: 31951644 PMCID: PMC6992230 DOI: 10.1371/journal.ppat.1008191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/30/2020] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Avian influenza viruses (AIVs) periodically cross species barriers and infect humans. The likelihood that an AIV will evolve mammalian transmissibility depends on acquiring and selecting mutations during spillover, but data from natural infection is limited. We analyze deep sequencing data from infected humans and domestic ducks in Cambodia to examine how H5N1 viruses evolve during spillover. Overall, viral populations in both species are predominated by low-frequency (<10%) variation shaped by purifying selection and genetic drift, and half of the variants detected within-host are never detected on the H5N1 virus phylogeny. However, we do detect a subset of mutations linked to human receptor binding and replication (PB2 E627K, HA A150V, and HA Q238L) that arose in multiple, independent humans. PB2 E627K and HA A150V were also enriched along phylogenetic branches leading to human infections, suggesting that they are likely human-adaptive. Our data show that H5N1 viruses generate putative human-adapting mutations during natural spillover infection, many of which are detected at >5% frequency within-host. However, short infection times, genetic drift, and purifying selection likely restrict their ability to evolve extensively during a single infection. Applying evolutionary methods to sequence data, we reveal a detailed view of H5N1 virus adaptive potential, and develop a foundation for studying host-adaptation in other zoonotic viruses. H5N1 avian influenza viruses can cross species barriers and cause severe disease in humans. H5N1 viruses currently cannot replicate and transmit efficiently among humans, but animal infection studies and modeling experiments have suggested that human adaptation may require only a few mutations. However, data from natural spillover infection has been limited, posing a challenge for risk assessment. Here, we analyze a unique dataset of deep sequence data from H5N1 virus-infected humans and domestic ducks in Cambodia. We find that well-known markers of human receptor binding and replication arise in multiple, independent humans. We also find that 3 mutations detected within-host are enriched along phylogenetic branches leading to human infections, suggesting that they are likely human-adapting. However, we also show that within-host evolution in both humans and ducks are shaped heavily by purifying selection and genetic drift, and that a large fraction of within-host variation is never detected on the H5N1 phylogeny. Taken together, our data show that H5N1 viruses do generate human-adapting mutations during natural infection. However, short infection times, purifying selection, and genetic drift may severely limit how much H5N1 viruses can evolve during the course of a single infection.
Collapse
|
3
|
Tang YD, Zhang X, Na L, Wang XF, Fu LH, Zhu CH, Wang X, Zhou JH. Double-stranded-RNA-specific adenosine deaminase 1 (ADAR1) is proposed to contribute to the adaptation of equine infectious anemia virus from horses to donkeys. Arch Virol 2016; 161:2667-72. [PMID: 27383210 DOI: 10.1007/s00705-016-2951-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/25/2016] [Indexed: 12/14/2022]
Abstract
Equine infectious anemia virus (EIAV) is a member of the genus Lentivirus of the family Retroviridae. Horses are the most susceptible equids to EIAV infection and are therefore the primary hosts of this virus. In contrast, infected donkeys do not develop clinically active equine infectious anemia (EIA). This phenomenon is similar to what has been observed with HIV-1, which fails to induce AIDS in non-human primates. Interestingly, Shen et al. developed a donkey-tropic pathogenic virus strain (EIAVDV117, DV117) by serially passaging a horse-tropic pathogenic strain, EIAVLN40 (LN40), in donkeys. LN40, which was generated by passaging a field isolate in horses, displayed enhanced virulence in horses but caused no clinical symptoms in donkeys. Infection with DV117 induced acute EIA in nearly 100 % of donkeys. Genomic analysis of DV117 revealed a significantly higher frequency of A-to-G substitutions when compared to LN40. Furthermore, detailed analysis of dinucleotide editing showed that A-to-G mutations had a preference for 5'TpA and 5'ApA. These results strongly implicated the activity of the adenosine deaminase, ADAR1, in this type of mutation. Further investigation demonstrated that overexpression of donkey ADAR1 increased A-to-G mutations within the genome of EIAV. Together with our previous finding that multiple mutations in multiple genes are generated in DV117 during its adaptation from horses to donkeys, the present study suggests that ADAR1-induced A-to-G mutations occur during virus adaption to related new hosts contributing to the alteration of EIAV host tropism.
Collapse
Affiliation(s)
- Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Xiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Li-Hua Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Chun-Hui Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.,Reproductive Medicine Center, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, 225001, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Harbin Pharmaceutical Group Biovaccine Company, Harbin, 150069, China.
| |
Collapse
|
4
|
Uncovering the Potential Pan Proteomes Encoded by Genomic Strand RNAs of Influenza A Viruses. PLoS One 2016; 11:e0146936. [PMID: 26761196 PMCID: PMC4711952 DOI: 10.1371/journal.pone.0146936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus genomes are composed of eight negative sense RNAs. In total, 16 proteins encoded by eight positive sense RNAs were identified. One putative protein coding sequence (PCS) encoded by genomic strand RNA of segment 8 has been previously proposed. In this study, 95,608, 123,965 and 35,699 genomic strand RNA sequences from influenza A viruses from avian, human and mammalian hosts, respectively, were used to identify PCSs encoded by the genomic strand RNAs. In total, 326,069 PCSs with lengths equal to or longer than 80 amino acids were identified and clustered into 270 PCS groups. Twenty of the 270 PCS groups which have greater than 10% proportion in influenza A viruses from avian, human or mammalian hosts were selected for detailed study. Maps of the 20 PCSGs in the influenza A virus genomes were constructed. The proportions of the 20 PCSGs in influenza A viruses from different hosts and serotypes were analyzed. One secretory and five membrane proteins predicted from the PCS groups encoded by genomic strand RNAs of segments 1, 2, 4, 6, 7 and 8 were identified. These results suggest the possibility of the ambisense nature of the influenza A virus genomic RNAs and a potential coding sequence reservoir encoding potential pan proteomes of influenza A viruses.
Collapse
|
5
|
Evolution of Newcastle Disease Virus Quasispecies Diversity and Enhanced Virulence after Passage through Chicken Air Sacs. J Virol 2015; 90:2052-63. [PMID: 26656697 DOI: 10.1128/jvi.01801-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED It has been reported that lentogenic Newcastle disease virus (NDV) isolates have the potential to become velogenic after their transmission and circulation in chickens, but the underlying mechanism is unclear. In this study, a highly velogenic NDV variant, JS10-A10, was generated from the duck-origin lentogenic isolate JS10 through 10 consecutive passages in chicken air sacs. The velogenic properties of this selected variant were determined using mean death time (MDT) assays, intracerebral pathogenicity index (ICPI), the intravenous pathogenicity index (IVPI), histopathology, and the analysis of host tissue tropism. In contrast, JS10 remained lentogenic after 20 serial passages in chicken eggs (JS10-E20). The JS10, JS10-A10, and JS10-E20 genomes were sequenced and found to be nearly identical, suggesting that both JS10-A10 and JS10-E20 were directly generated from JS10. To investigate the mechanism for virulence enhancement, the partial genome covering the F0 cleavage site of JS10 and its variants were analyzed using ultradeep pyrosequencing (UDPS) and the proportions of virulence-related genomes in the quasispecies were calculated. Velogenic NDV genomes accumulated as a function of JS10 passaging through chicken air sacs. Our data suggest that lentogenic NDV strains circulating among poultry might be a risk factor to future potential velogenic NDV outbreaks in chickens. IMPORTANCE An avirulent isolate, JS10, was passaged through chicken air sacs and embryos, and the pathogenicity of the variants was assessed. A virulent variant, JS10-A10, was generated from consecutive passage in air sacs. We developed a deep-sequencing approach to detect low-frequency viral variants across the NDV genome. We observed that virulence enhancement of JS10 was due to the selective accumulation of velogenic quasispecies and the concomitant disappearance of lentogenic quasispecies. Our results suggest that because it is difficult to avoid contact between natural waterfowl reservoirs and sensitive poultry operations, circulating lentogenic NDV strains may represent a potential reservoir for emergent velogenic NDV strains that could cause outbreaks in chickens.
Collapse
|
6
|
Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) promotes EIAV replication and infectivity. Virology 2015; 476:364-371. [PMID: 25589239 DOI: 10.1016/j.virol.2014.12.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/23/2014] [Accepted: 12/23/2014] [Indexed: 12/23/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) have been reported to be functional on various viruses. ADAR1 may exhibit antiviral or proviral activity depending on the type of virus. Human immunodeficiency virus (HIV)-1 is the most well-studied lentivirus with respect to its interaction with ADAR1, and variable results have been reported. In this study, we demonstrated that equine ADAR1 (eADAR1) was a positive regulator of equine infectious anemia virus (EIAV), another lentivirus of the Retroviridae family. First, eADAR1 significantly promoted EIAV replication, and the enhancement of viral protein expression was associated with the long terminal repeat (LTR) and Rev response element (RRE) regions. Second, the RNA binding domain 1 of eADAR1 was essential only for enhancing LTR-mediated gene expression. Third, in contrast with APOBEC proteins, which have been shown to reduce lentiviral infectivity, eADAR1 increased the EIAV infectivity. This study indicated that eADAR1 was proviral rather than antiviral for EIAV.
Collapse
|
7
|
Cheung PPH, Rogozin IB, Choy KT, Ng HY, Peiris JSM, Yen HL. Comparative mutational analyses of influenza A viruses. RNA (NEW YORK, N.Y.) 2015; 21:36-47. [PMID: 25404565 PMCID: PMC4274636 DOI: 10.1261/rna.045369.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The error-prone RNA-dependent RNA polymerase (RdRP) and external selective pressures are the driving forces for RNA viral diversity. When confounded by selective pressures, it is difficult to assess if influenza A viruses (IAV) that have a wide host range possess comparable or distinct spontaneous mutational frequency in their RdRPs. We used in-depth bioinformatics analyses to assess the spontaneous mutational frequencies of two RdRPs derived from human seasonal (A/Wuhan/359/95; Wuhan) and H5N1 (A/Vietnam/1203/04; VN1203) viruses using the mini-genome system with a common firefly luciferase reporter serving as the template. High-fidelity reverse transcriptase was applied to generate high-quality mutational spectra which allowed us to assess and compare the mutational frequencies and mutable motifs along a target sequence of the two RdRPs of two different subtypes. We observed correlated mutational spectra (τ correlation P < 0.0001), comparable mutational frequencies (H3N2:5.8 ± 0.9; H5N1:6.0 ± 0.5), and discovered a highly mutable motif "(A)AAG" for both Wuhan and VN1203 RdRPs. Results were then confirmed with two recombinant A/Puerto Rico/8/34 (PR8) viruses that possess RdRP derived from Wuhan or VN1203 (RG-PR8×Wuhan(PB2, PB1, PA, NP) and RG-PR8×VN1203(PB2, PB1, PA, NP)). Applying novel bioinformatics analysis on influenza mutational spectra, we provide a platform for a comprehensive analysis of the spontaneous mutation spectra for an RNA virus.
Collapse
Affiliation(s)
- Peter Pak-Hang Cheung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894-6075, USA
| | - Ka-Tim Choy
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hoi Yee Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joseph Sriyal Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
8
|
Edenborough K, Marsh GA. Reverse genetics: Unlocking the secrets of negative sense RNA viral pathogens. World J Clin Infect Dis 2014; 4:16-26. [DOI: 10.5495/wjcid.v4.i4.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/29/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, encephalitis and vasculitis are common disease outcomes in people as a result of pathogenic viral infection, and are also associated with high case fatality rates. Viral spread from exposure sites to systemic tissues and organs is mediated by virulence factors, including viral attachment glycoproteins and accessory proteins, and their contribution to infection and disease have been delineated by reverse genetics; a molecular approach that enables researchers to experimentally produce recombinant and reassortant viruses from cloned cDNA. Through reverse genetics we have developed a deeper understanding of virulence factors key to disease causation thereby enabling development of targeted antiviral therapies and well-defined live attenuated vaccines. Despite the value of reverse genetics for virulence factor discovery, classical reverse genetic approaches may not provide sufficient resolution for characterization of heterogeneous viral populations, because current techniques recover clonal virus, representing a consensus sequence. In this review the contribution of reverse genetics to virulence factor characterization is outlined, while the limitation of the technique is discussed with reference to new technologies that may be utilized to improve reverse genetic approaches.
Collapse
|
9
|
Liu Y, Ma T, Liu J, Zhao X, Cheng Z, Guo H, Xu R, Wang S. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA. J Matern Fetal Neonatal Med 2014; 28:2096-9. [PMID: 25330844 DOI: 10.3109/14767058.2014.979147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the Picornaviridae family. An effective live-attenuated poliovirus vaccine strain (Sabin 1) has been developed and has protected humans from polio. However, a few cases of vaccine virulence reversion have been documented in several countries. For instance, circulating type 1 vaccine-derived poliovirus is a highly pathogenic poliovirus that evolved from an avirulent strain, but the mechanism by which vaccine strains undergo reversion remains unclear. In this study, vaccine strains exhibited A to G/U to C and G to A/C to U hypermutations in the reversed evolution of Sabin 1. Furthermore, the mutation ratios of U to C and C to U were higher than those of other mutation types. Dinucleotide editing context was then analyzed. Results showed that A to G and U to C mutations exhibited preferences similar to adenosine deaminases acting on RNA (ADAR). Hence, ADARs may participate in poliovirus vaccine evolution.
Collapse
Affiliation(s)
- Yanhan Liu
- a College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province , Shandong Agricultural University , Tai`an , China
| | - Tengfei Ma
- a College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province , Shandong Agricultural University , Tai`an , China
| | - Jianzhu Liu
- a College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province , Shandong Agricultural University , Tai`an , China
| | - Xiaona Zhao
- a College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province , Shandong Agricultural University , Tai`an , China
| | - Ziqiang Cheng
- a College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province , Shandong Agricultural University , Tai`an , China
| | - Huijun Guo
- a College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province , Shandong Agricultural University , Tai`an , China
| | - Ruixue Xu
- a College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province , Shandong Agricultural University , Tai`an , China
| | - Shujing Wang
- a College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province , Shandong Agricultural University , Tai`an , China
| |
Collapse
|
10
|
Murillo LN, Murillo MS, Perelson AS. Towards multiscale modeling of influenza infection. J Theor Biol 2013; 332:267-90. [PMID: 23608630 DOI: 10.1016/j.jtbi.2013.03.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/19/2013] [Accepted: 03/27/2013] [Indexed: 02/05/2023]
Abstract
Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately.
Collapse
Affiliation(s)
- Lisa N Murillo
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|