1
|
Nadeem MF, Zeeshan N, Khattak AA, Awan UA, Yaqoob A. Fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum clinical isolates collected from unrest tribal agencies of Pakistan. BRAZ J BIOL 2021; 83:e247422. [PMID: 34431917 DOI: 10.1590/1519-6984.247422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Plasmodium falciparum resistance to Chloroquine (CQ) is a significant cause of mortality and morbidity worldwide. There is a paucity of documented data on the prevalence of CQ-resistant mutant haplotypes of Pfcrt and Pfmdr1 genes from malaria-endemic war effected Federally Administered Tribal Areas of Pakistan. The objective of this study was to investigate the prevalence of P. falciparum CQ-resistance in this area. Clinical isolates were collected between May 2017 and May 2018 from North Waziristan and South Waziristan agencies of Federally Administrated Trial Area. Subsequently, Giemsa-stained blood smears were examined to detect Plasmodium falciparum. Extraction of malarial DNA was done from microscopy positive P. falciparum samples, and P. falciparum infections were confirmed by nested PCR (targeting Plasmodium small subunit ribosomal ribonucleic acid (ssrRNA) genes). All PCR confirmed P. falciparum samples were sequenced by pyrosequencing to find out mutation in Pfcrt gene at codon K76T and in pfmdr1 at codons N86Y, Y184F, N1042D, and D1246Y. Out of 121 microscopies positive P. falciparum cases, 109 samples were positive for P. falciparum by nested PCR. Pfcrt K76T mutation was found in 96% of isolates, Pfmdr1 N86Y mutation was observed in 20%, and 11% harboured Y184F mutation. All samples were wild type for Pfmdr1 codon N1042D and D1246Y. In the FATA, Pakistan, the frequency of resistant allele 76T remained high despite the removal of CQ. However, current findings of the study suggest complete fixation of P. falciparum CQ-resistant genotype in the study area.
Collapse
Affiliation(s)
- M F Nadeem
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - N Zeeshan
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - A A Khattak
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - U A Awan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - A Yaqoob
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| |
Collapse
|
2
|
Khan AQ, Pernaute-Lau L, Khattak AA, Luijcx S, Aydin-Schmidt B, Hussain M, Khan TA, Mufti FU, Morris U. Surveillance of genetic markers associated with Plasmodium falciparum resistance to artemisinin-based combination therapy in Pakistan, 2018-2019. Malar J 2020; 19:206. [PMID: 32513171 PMCID: PMC7282094 DOI: 10.1186/s12936-020-03276-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The spread of artemisinin resistance in the Greater Mekong Subregion of Southeast Asia poses a significant threat for current anti-malarial treatment guidelines globally. The aim of this study was to assess the current prevalence of molecular markers of drug resistance in Plasmodium falciparum in the four provinces with the highest malaria burden in Pakistan, after introducing artemether-lumefantrine as first-line treatment in 2017. METHODS Samples were collected during routine malaria surveillance in Punjab, Sindh, Baluchistan, and Khyber Pakhtunkhwa provinces of Pakistan between January 2018 and February 2019. Plasmodium falciparum infections were confirmed by rapid diagnostic test or microscopy. Plasmodium falciparum positive isolates (n = 179) were screened by Sanger sequencing for single nucleotide polymorphisms (SNPs) in the P. falciparum kelch 13 (pfk13) propeller domain and in P. falciparum coronin (pfcoronin). SNPs in P. falciparum multidrug resistance 1 (pfmdr1) N86Y, Y184F, D1246Y and P. falciparum chloroquine resistance transporter (pfcrt) K76T were genotyped by PCR-restriction fragment length polymorphism. RESULTS No artemisinin resistance associated SNPs were identified in the pfk13 propeller domain or in pfcoronin. The pfmdr1 N86, 184F, D1246 and pfcrt K76 alleles associated with reduced lumefantrine sensitivity were present in 83.8% (150/179), 16.9% (29/172), 100.0% (173/173), and 8.4% (15/179) of all infections, respectively. The chloroquine resistance associated pfcrt 76T allele was present in 98.3% (176/179) of infections. CONCLUSION This study provides an update on the current prevalence of molecular markers associated with reduced P. falciparum sensitivity to artemether and/or lumefantrine in Pakistan, including a first baseline assessment of polymorphisms in pfcoronin. No mutations associated with artemisinin resistance were observed in pfk13 or pfcoronin. However, the prevalence of the pfmdr1 N86 and D1246 alleles, that have been associated with decreased susceptibility to lumefantrine, remain high. Although clinical and molecular data suggest that the current malaria treatment guidelines for P. falciparum are presently effective in Pakistan, close monitoring for artemisinin and lumefantrine resistance will be critical to ensure early detection and enhanced containment of emerging ACT resistance spreading across from Southeast Asia.
Collapse
Affiliation(s)
- Abdul Qader Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Biosystems and Integrative Science Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Sanna Luijcx
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Aydin-Schmidt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mubashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Taj Ali Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Farees Uddin Mufti
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Awasthi G, Das A. Genetics of chloroquine-resistant malaria: a haplotypic view. Mem Inst Oswaldo Cruz 2015; 108:947-61. [PMID: 24402147 PMCID: PMC4005552 DOI: 10.1590/0074-0276130274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
The development and rapid spread of chloroquine resistance (CQR) in
Plasmodium falciparum have triggered the identification of
several genetic target(s) in the P. falciparum genome. In
particular, mutations in the Pfcrt gene, specifically, K76T and
mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75
and 76), are considered to be highly related to CQR. These various mutations form
several different haplotypes and Pfcrt gene polymorphisms and the
global distribution of the different CQR- Pfcrt haplotypes in
endemic and non-endemic regions of P. falciparum malaria have been
the subject of extensive study. Despite the fact that the Pfcrt gene
is considered to be the primary CQR gene in P. falciparum , several
studies have suggested that this may not be the case. Furthermore, there is a poor
correlation between the evolutionary implications of the Pfcrt
haplotypes and the inferred migration of CQR P. falciparum based on
CQR epidemiological surveillance data. The present paper aims to clarify the existing
knowledge on the genetic basis of the different CQR- Pfcrt
haplotypes that are prevalent in worldwide populations based on the published
literature and to analyse the data to generate hypotheses on the genetics and
evolution of CQR malaria.
Collapse
|
4
|
Ghanchi NK, Shakoor S, Thaver AM, Khan MS, Janjua A, Beg MA. Current situation and challenges in implementing Malaria control strategies in Pakistan. Crit Rev Microbiol 2014; 42:588-93. [DOI: 10.3109/1040841x.2014.973368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- N. K. Ghanchi
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan and
| | - S. Shakoor
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan and
| | - A. M. Thaver
- Medical College, Aga Khan University, Karachi, Pakistan
| | - M. S. Khan
- Medical College, Aga Khan University, Karachi, Pakistan
| | - A. Janjua
- Medical College, Aga Khan University, Karachi, Pakistan
| | - M. A. Beg
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan and
| |
Collapse
|
5
|
Sutton PL. A call to arms: on refining Plasmodium vivax microsatellite marker panels for comparing global diversity. Malar J 2013; 12:447. [PMID: 24330329 PMCID: PMC3878832 DOI: 10.1186/1475-2875-12-447] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsatellite (MS) markers have become an important tool for studying the population diversity, evolutionary history and multiplicity of infection (MOI) of malaria parasite infections. MS are typically selected on the basis of being highly polymorphic. However, it is known that the polymorphic potential (mutability) of each marker can vary as much as two orders of magnitude, which radically changes how diversity is represented in the genome from one marker to the next. Over the past decade, approximately 240 Plasmodium vivax MS have been published, comprising nine major panels of markers. Inconsistent usage of each panel has resulted in a surfeit of descriptive genetic diversity data that are largely incomparable between populations. The objective of this study was to statistically evaluate the quality of individual MS markers in order to validate a refined panel of markers that will provide a balanced picture of P. vivax population diversity. METHODS All previously published data, including genetic diversity indices, MS parameters, and population parameters, were assembled from 18 different global studies into a flat file to facilitate statistical analysis and modelling using JMP® Genomics 6.0 (SAS Institute Inc, Cary, NC, USA). Statistical modeling was employed to down-select markers with extreme variation among the mean number of alleles, expected heterozygosity, maximum repeat length and/or chromosomal location of the repeat. Individual MS were analysed by step-down whole model linear regression and standard least squares fit models, both stratified by annual parasite incidence to identify MS markers with values significantly different from the mean. RESULTS Of the 42 MS under evaluation in this study, 18 (nine high priority) were identified as ideal candidates for measuring population diversity between global regions, while five (two high priority) additional markers were identified as candidates for MOI studies. CONCLUSIONS MS diversity was found to be a function of endemicity and motif structure. Evaluation of individual MS permitted the assembly of a refined panel of markers that can be reliably utilized in the field to compare population structures between global regions.
Collapse
Affiliation(s)
- Patrick L Sutton
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
6
|
Khattak AA, Venkatesan M, Jacob CG, Artimovich EM, Nadeem MF, Nighat F, Hombhanje F, Mita T, Malik SA, Plowe CV. A comprehensive survey of polymorphisms conferring anti-malarial resistance in Plasmodium falciparum across Pakistan. Malar J 2013; 12:300. [PMID: 23988011 PMCID: PMC3765786 DOI: 10.1186/1475-2875-12-300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Background Few studies have been conducted in Pakistan to determine the efficacy of chloroquine and sulphadoxine-pyrimethamine (SP), which remain in use as treatment for Plasmodium vivax and in combination with artesunate to treat Plasmodium falciparum, respectively. In this study, samples from several sites across Pakistan were characterized to determine prevalence of molecular resistance markers in the P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and the origin of chloroquine-resistant P. falciparum parasites. Methods Microscopy-confirmed malaria parasite-positive blood samples from 801 patients across the country were collected in 2011. Of these, 171 infections were identified by polymerase chain reaction (PCR) as P. falciparum and analysed by pyrosequencing for mutations conferring chloroquine resistance (pfcrt codons 72–76), multidrug resistance (pfmdr1 N86Y, Y184F, S1034C, N1042D and D1246Y), pyrimethamine resistance (pfdhfr, C50R, N51I, C59R, S108N and I164L) and sulphadoxine resistance (pfdhps, S436A, A437G, K540E, A581G and A613T/S). pfmdr1 gene copy number variation was determined by real-time PCR, and microsatellites flanking the pfcrt locus were typed to determine the origin of the chloroquine-resistant haplotype. Results The pfcrt K76T mutation was found in all samples as part of the S72/V73/M74/N75/T76 (SVMNT) haplotype. Microsatellites flanking pfcrt showed high similarity to the signature found in India and Papua New Guinea. pfmdr1 N86Y was found in 20% of samples and all samples harboured a single copy of the pfmdr1 gene. The pfdhfr double mutation C59R + S108N was present in 87% of samples while the pfdhfr triple mutant (N51I + C59R + S108N) was not detected. Pfdhps A437G was found in 60% of samples. Pure pfdhps K540E was rare, at 4%, but mixed genotype 540 K/E was found in 77% of samples. Similarly, pure pfdhps A581G was found in 4% of the isolates while mixed 581A/G was found in 39% of samples. Conclusions These results suggest an emerging problem with multidrug resistant P. falciparum in Pakistan. The chloroquine resistance genotype has reached complete fixation in the population, with a microsatellite pattern indicative of a selective sweep. Moreover, the prevalence of mutations in both pfdhfr and pfdhps, albeit without the presence of the pfdhfr triple mutant, indicates that continued monitoring is warranted to assess whether SP remains efficacious as a partner drug for artesunate for the treatment of P. falciparum.
Collapse
Affiliation(s)
- Aamer A Khattak
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Khattak AA, Venkatesan M, Nadeem MF, Satti HS, Yaqoob A, Strauss K, Khatoon L, Malik SA, Plowe CV. Prevalence and distribution of human Plasmodium infection in Pakistan. Malar J 2013; 12:297. [PMID: 23984968 PMCID: PMC3765785 DOI: 10.1186/1475-2875-12-297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/26/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. METHODS A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. RESULTS Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. CONCLUSIONS Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high.
Collapse
Affiliation(s)
- Aamer A Khattak
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum. INFECTION GENETICS AND EVOLUTION 2013; 19:164-75. [PMID: 23871774 DOI: 10.1016/j.meegid.2013.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 11/20/2022]
Abstract
Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r=0.49, P=0.003, N=83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both neutral and adaptive loci across India.
Collapse
|
9
|
Al-Hamidhi S, Mahdy MAK, Al-Hashami Z, Al-Farsi H, Al-mekhlafi AM, Idris MA, Beja-Pereira A, Babiker HA. Genetic diversity of Plasmodium falciparum and distribution of drug resistance haplotypes in Yemen. Malar J 2013; 12:244. [PMID: 23855834 PMCID: PMC3729657 DOI: 10.1186/1475-2875-12-244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022] Open
Abstract
Background Despite evident success of malaria control in many sites in the Arabian Peninsula, malaria remains endemic in a few spots, in Yemen and south-west of Saudi Arabia. In addition to local transmission, imported malaria sustains an extra source of parasites that can challenge the strengths of local control strategies. This study examined the genetic diversity of Plasmodium falciparum in Yemen and mutations of drug resistant genes, to elucidate parasite structure and distribution of drug resistance genotypes in the region. Methods Five polymorphic loci (MSP-2, Pfg377 and three microsatellites on chromosome 8) not involved in anti-malarial drug resistance, and four drug resistant genes (pfcrt, pfmdr1, dhfr and dhps) were genotyped in 108 P. falciparum isolates collected in three sites in Yemen: Dhamar, Hodeidah and Taiz. Results High diversity was seen in non-drug genes, pfg377 (He = 0.66), msp-2 (He = 0.80) and three microsatellites on chr 8, 7.7 kb (He = 0.88), 4.3 kb (He = 0.77) and 0.8 kb (He = 0.71). There was a high level of mixed-genotype infections (57%), with an average 1.8 genotypes per patient. No linkage disequilibrium was seen between drug resistant genes and the non-drug markers (p < 0.05). Genetic differentiation between populations was low (most pair-wise FST values <0.03), indicating extensive gene flow between the parasites in the three sites. There was a high prevalence of mutations in pfmdr1, pfcrt and dhfr; with four mutant pfmdr1 genotypes (NFCDD[57%], NFSND[21%], YFCDD[13%] and YFSND[8% ]), two mutant pfcrt genotypes (CVIET[89%] and SVMNT[4%]) and one mutant dhfr genotype (ICNI[53.7%]). However, no dhps mutations were detected. Conclusion The high diversity of P. falciparum in Yemen is indicative of a large parasite reservoir, which represents a challenge to control efforts. The presence of two distinct pfcrt genotype, CVIET and SVMNT, suggests that chloroquine resistance can possibly be related to a migratory path from Africa and Asia. The absence of the triple mutant dhfr genotype (IRN) and dhps mutations supports the use of artesunate + sulphadoxine-pyrimethamine as first-line therapy. However, the prevalent pfmdr1 genotype NFSND [21%] has previously been associated with tolerance/resistance response to artemisinin combination therapy (ACT). Regular surveys are, therefore, important to monitor spread of pfmdr1 and dhfr mutations and response to ACT.
Collapse
|