1
|
Han S, Song MS, Song H, Yu J, Choi C, Park SH, Ha SD. Control of rotavirus by sequential stress of disinfectants and gamma irradiation in leafy vegetable industry. Food Res Int 2025; 200:115456. [PMID: 39779116 DOI: 10.1016/j.foodres.2024.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Rotavirus (RV) causes severe gastroenteritis in infants and young children worldwide. Fresh produce has been reported as a source of RV infection during production and harvesting, leading to foodborne illness. Cases of contamination from contact surfaces have also been reported. Therefore, this study applied chemical methods (chlorine dioxide [ClO2], peracetic acid [PAA]), physical methods (gamma irradiation), and a combination of methods (disinfectants + gamma irradiation) to inactivate RV on food contact surfaces (stainless steel) and food (lettuce). Furthermore, the changes in food quality after the combined treatments were assessed. The results of the chemical treatment showed that RV was reduced below the detection limit after treatment for 1 min with 20 ppm ClO2 or 120 ppm PAA in RV suspension. On stainless steel, treatment with 200 ppm ClO2 or 2,000 ppm PAA reduced contaminated RV by more than 4 log. A 5 min treatment with 50 ppm ClO2 or 80 ppm PAA on lettuce reduced the RV by 1.79 and 0.75 log, respectively. Treatment with 4 kGy of gamma irradiation resulted in more than 5 log reduction in suspensions and 3.27 log reduction on food. The sequential treatments, including 30 ppm ClO2 followed by 1.5 kGy gamma irradiation and 80 ppm PAA followed by 1.5 kGy gamma irradiation, showed additional inactivation effects (p < 0.05) compared to each single treatment. No changes in food quality (color difference and texture) were observed after any treatments, suggesting that the combined treatment of both ClO2 and gamma irradiation and PAA and gamma irradiation can be applied in the fresh food industry to reduce RV contamination.
Collapse
Affiliation(s)
- Sangha Han
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Min Su Song
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hyewon Song
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jisu Yu
- Lotte R&D Center, 201 Magokjungang-ro, Sangsoe-gu, Seoul, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Si-Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
2
|
Fukuda Y, Araki K, Hara M, Yamashita Y, Adachi S, Honjo S, Togashi A, Hirakawa S, Fukumura S, Yamamoto M, Tsugawa T. Sequence analysis of a feline- and porcine-origin G3P[9] rotavirus A strain in a child with acute gastroenteritis in Japan. Arch Virol 2023; 168:45. [PMID: 36609581 DOI: 10.1007/s00705-022-05685-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 01/08/2023]
Abstract
We isolated the rare G3P[9] rotavirus strain RVA/Human-wt/JPN/R11-035/2015/G3P[9] from a 2-year-old girl presenting with vomiting and diarrhea who had daily contact with cats in Japan, 2015. Full-genome analysis revealed that the R11-035 strain had an AU-1-like genetic constellation, except for the NSP3 (T) gene: G3-P[9]-I3-R3-C3-M3-A3-N3-T1-E3-H6. Phylogenetic analysis showed that strain R11-035 is closely related to human/feline-like human strains, and only the NSP3 (T1) gene was clustered together with Taiwanese porcine strains. We postulate that the R11-035 strain was directly transmitted from a cat to the patient and acquired its NSP3 gene through intergenotype reassortment with porcine strains before being transmitted to humans.
Collapse
Affiliation(s)
- Yuya Fukuda
- Department of Pediatrics, Japan Red Cross Urakawa Hospital, 1-2-1, Chinomi, Higashimachi, Urakawa-chou, Urakawa-gun, Hokkaido, 057-0007, Japan.,Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kaoru Araki
- Health Care Center, Saga University, 1 Honjo, Saga City, Saga, 840-8502, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Saga University, 1-1, 5-chome, Nabeshima, Saga City, Saga, 849-8501, Japan
| | - Yuji Yamashita
- Yamashita Children's Clinic, 1-2, 3-chome, Urashi, Itoshima, Fukuoka, 819-1112, Japan
| | - Shuhei Adachi
- Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Saho Honjo
- Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Atsuo Togashi
- Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Satoshi Hirakawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Masaki Yamamoto
- Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| |
Collapse
|
4
|
Parenterally Administered P24-VP8* Nanoparticle Vaccine Conferred Strong Protection against Rotavirus Diarrhea and Virus Shedding in Gnotobiotic Pigs. Vaccines (Basel) 2019; 7:vaccines7040177. [PMID: 31698824 PMCID: PMC6963946 DOI: 10.3390/vaccines7040177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Current live rotavirus vaccines are costly with increased risk of intussusception due to vaccine replication in the gut of vaccinated children. New vaccines with improved safety and cost-effectiveness are needed. In this study, we assessed the immunogenicity and protective efficacy of a novel P24-VP8* nanoparticle vaccine using the gnotobiotic (Gn) pig model of human rotavirus infection and disease. Three doses of P24-VP8* (200 μg/dose) intramuscular vaccine with Al(OH)3 adjuvant (600 μg) conferred significant protection against infection and diarrhea after challenge with virulent Wa strain rotavirus. This was indicated by the significant reduction in the mean duration of diarrhea, virus shedding in feces, and significantly lower fecal cumulative consistency scores in post-challenge day (PCD) 1-7 among vaccinated pigs compared to the mock immunized controls. The P24-VP8* vaccine was highly immunogenic in Gn pigs. It induced strong VP8*-specific serum IgG and Wa-specific virus-neutralizing antibody responses from post-inoculation day 21 to PCD 7, but did not induce serum or intestinal IgA antibody responses or a strong effector T cell response, which are consistent with the immunization route, the adjuvant used, and the nature of the non-replicating vaccine. The findings are highly translatable and thus will facilitate clinical trials of the P24-VP8* nanoparticle vaccine.
Collapse
|
5
|
Emergence of Double- and Triple-Gene Reassortant G1P[8] Rotaviruses Possessing a DS-1-Like Backbone after Rotavirus Vaccine Introduction in Malawi. J Virol 2018; 92:JVI.01246-17. [PMID: 29142125 PMCID: PMC5774894 DOI: 10.1128/jvi.01246-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023] Open
Abstract
To combat the high burden of rotavirus gastroenteritis, multiple African countries have introduced rotavirus vaccines into their childhood immunization programs. Malawi incorporated a G1P[8] rotavirus vaccine (Rotarix) into its immunization schedule in 2012. Utilizing a surveillance platform of hospitalized rotavirus gastroenteritis cases, we examined the phylodynamics of G1P[8] rotavirus strains that circulated in Malawi before (1998 to 2012) and after (2013 to 2014) vaccine introduction. Analysis of whole genomes obtained through next-generation sequencing revealed that all randomly selected prevaccine G1P[8] strains sequenced (n = 32) possessed a Wa-like genetic constellation, whereas postvaccine G1P[8] strains (n = 18) had a DS-1-like constellation. Phylodynamic analyses indicated that postvaccine G1P[8] strains emerged through reassortment events between human Wa- and DS-1-like rotaviruses that circulated in Malawi from the 1990s and hence were classified as atypical DS-1-like reassortants. The time to the most recent common ancestor for G1P[8] strains was from 1981 to 1994; their evolutionary rates ranged from 9.7 × 10−4 to 4.1 × 10−3 nucleotide substitutions/site/year. Three distinct G1P[8] lineages chronologically replaced each other between 1998 and 2014. Genetic drift was the likely driver for lineage turnover in 2005, whereas replacement in 2013 was due to reassortment. Amino acid substitution within the outer glycoprotein VP7 of G1P[8] strains had no impact on the structural conformation of the antigenic regions, suggesting that it is unlikely that they would affect recognition by vaccine-induced neutralizing antibodies. While the emergence of DS-1-like G1P[8] rotavirus reassortants in Malawi was therefore likely due to natural genotype variation, vaccine effectiveness against such strains needs careful evaluation. IMPORTANCE The error-prone RNA-dependent RNA polymerase and the segmented RNA genome predispose rotaviruses to genetic mutation and genome reassortment, respectively. These evolutionary mechanisms generate novel strains and have the potential to lead to the emergence of vaccine escape mutants. While multiple African countries have introduced a rotavirus vaccine, there are few data describing the evolution of rotaviruses that circulated before and after vaccine introduction. We report the emergence of atypical DS-1-like G1P[8] strains during the postvaccine era in Malawi. Three distinct G1P[8] lineages circulated chronologically from 1998 to 2014; mutation and reassortment drove lineage turnover in 2005 and 2013, respectively. Amino acid substitutions within the outer capsid VP7 glycoprotein did not affect the structural conformation of mapped antigenic sites, suggesting a limited effect on the recognition of G1-specific vaccine-derived antibodies. The genes that constitute the remaining genetic backbone may play important roles in immune evasion, and vaccine effectiveness against such atypical strains needs careful evaluation.
Collapse
|
6
|
Suzuki Y. A candidate packaging signal of human rotavirus differentiating Wa-like and DS-1-like genomic constellations. Microbiol Immunol 2016. [PMID: 26224654 DOI: 10.1111/1348-0421.12288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rotavirus A (RVA) possesses a genome of 11 segmented RNAs. In human RVA, two major genomic constellations are represented by prototype strains Wa and DS-1. Here packaging signals differentiating Wa-like and DS-1-like genomic constellations were searched for by analyzing genomic sequences of Wa-like and DS-1-like strains. One pair of 11 nucleotide sites in the coding regions of viral structural protein (VP) 2 and VP6 was found to be complementary specifically among Wa-like strains. These sites tended to be free from base-pairing in secondary structures of genomic segments, suggesting that they may serve as a packaging signal in Wa-like strains.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya-shi, Aichi-ken 467-8501, Japan
| |
Collapse
|
7
|
Abstract
Group A rotavirus (RVA), an etiological agent of gastroenteritis in young mammals and birds, possesses a genome of 11 double-stranded RNA segments. Although it is believed that the RVA virion contains one copy of each genomic segment and that the positive-strand RNA (+RNA) is incorporated into the core shell, the packaging mechanisms of RVA are not well understood. Here, packaging signals of RVA were searched for by analyzing genomic sequences of mammalian and avian RVA, which are considered to have evolved independently without reassortment. Assuming that packaging is mediated by direct interaction between +RNA segments via base-pairing, co-evolving complementary nucleotide sites were identified within and between genomic segments. There were two pairs of co-evolving complementary sites within the segment encoding VP7 (the VP7 segment) and one pair between the NSP2 and NSP3 segments. In the VP7 segment, the co-evolving complementary sites appeared to form stem structures in both mammalian and avian RVA, supporting their functionality. In contrast, co-evolving complementary sites between the NSP2 and NSP3 segments tended to be free from base-pairings and constituted loop structures, at least in avian RVA, suggesting that they are involved in a specific interaction between these segments as a packaging signal.
Collapse
|