1
|
Ghazvini K, Khoshbakht R, Tadayon K, Mosavari N, BahramiTaghanaki HR, Mohammadi GR, Rashti Baf M, Nourian K, Samiei A, Ghavidel M. Genotyping of Mycobacterium tuberculosis complex isolated from humans and animals in northeastern Iran. Sci Rep 2023; 13:6746. [PMID: 37185604 PMCID: PMC10127167 DOI: 10.1038/s41598-023-33740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The objective of this study was to genotype Mycobacterium tuberculosis complex isolated from humans and cattle in northern Iran. Over the course of one year, a total of 120 human and 21 cattle isolates were tested using region of difference (RD)-based polymerase chain reaction (PCR) and mycobacterial interspersed repetitive unites-variable number tandem repeats (MIRU-VNTR). In M. tuberculosis, out of 120 isolates investigated, the most common genotype detected was NEW-1 (53.3%), followed by CAS/ Delhi (24.1%), Haarlem (5%), Beijing (4.16%), Uganda I (4.16%), S (3.3%), Ural (0.83%), TUR (0.83%), Uganda II (0.83%), Lam (0.83%) and Cameroon (0.83%). The HGDI rate was 0.9981 and the clustering rate was 10.83. Of the isolates, QUB26 had the highest allele diversity (h: 0.76), while the loci Mtub29 and MIRU24 had the lowest (h: 0). In M. Bovis, out of 123 collected tissue samples, 21 (17%) grew on culture media. The HGDI rate was 0.71 and clustering rate was 85.7%. The locus ETRC had the highest allele diversity (h: 0.45). The findings of this study suggest that there is high genetic diversity among M. tuberculosis isolates in Khorasan Razavi Province, which is consistent with similar results from other studies in other provinces in Iran and neighboring countries. This indicates that the prevalent genotypes in this study are spreading in the Middle East region. Furthermore, considering that M. Bovis isolates were identified in two clusters, it seems that all of them have a common origin and are circulating among the livestock farms in the province.
Collapse
Affiliation(s)
- Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Khoshbakht
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Keyvan Tadayon
- Department of Microbiology, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nader Mosavari
- PPD Tuberculin Department, Razi Vaccine and Serum Research Institute, (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Gholam Reza Mohammadi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Rashti Baf
- Deputy of Veterinary Administration of Khorasan Razavi Province, Mashhad, Iran
| | - Kimiya Nourian
- Department of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amin Samiei
- Tuberculosis and Leprosy Coordinator at Health Chancellor, Health Center of Khorasan State, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdis Ghavidel
- Shahid Hasheminejad Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Hadifar S, Fateh A, Pourbarkhordar V, Siadat SD, Mostafaei S, Vaziri F. Variation in Mycobacterium tuberculosis population structure in Iran: a systemic review and meta-analysis. BMC Infect Dis 2021; 21:2. [PMID: 33397308 PMCID: PMC7784266 DOI: 10.1186/s12879-020-05639-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023] Open
Abstract
Background Acquiring comprehensive insight into the dynamics of Mycobacterium tuberculosis (Mtb) population structure is an essential step to adopt effective tuberculosis (TB) control strategies and improve therapeutic methods and vaccines. Accordingly, we performed this systematic review and meta-analysis to determine the overall prevalence of Mtb genotypes/ sublineages in Iran. Methods We carried out a comprehensive literature search using the international databases of MEDLINE and Scopus as well as Iranian databases. Articles published until April 2020 were selected based on the PRISMA flow diagram. The overall prevalence of the Mtb genotypes/sublineage in Iran was determined using the random effects or fixed effect model. The metafor R package and MedCalc software were employed for performing this meta-analysis. Results We identified 34 studies for inclusion in this study, containing 8329 clinical samples. Based on the pooled prevalence of the Mtb genotypes, NEW1 (21.94, 95% CI: 16.41–28.05%), CAS (19.21, 95% CI: 14.95–23.86%), EAI (12.95, 95% CI: 7.58–19.47%), and T (12.16, 95% CI: 9.18–15.50%) were characterized as the dominant circulating genotypes in Iran. West African (L 5/6), Cameroon, TUR and H37Rv were identified as genotypes with the lowest prevalence in Iran (< 2%). The highest pooled prevalence rates of multidrug-resistant strains were related to Beijing (2.52, 95% CI) and CAS (1.21, 95% CI). Conclusions This systematic review showed that Mtb populations are genetically diverse in Iran, and further studies are needed to gain a better insight into the national diversity of Mtb populations and their drug resistance pattern.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Centre (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Centre (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Pourbarkhordar
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Centre (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Epidemiology and Biostatistics Unit, Rheumatology Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Centre (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Mansoori N, Vaziri F, Amini S, Khanipour S, Pourazar Dizaji S, Douraghi M. Spoligotype and Drug Susceptibility Profiles of Mycobacterium tuberculosis Complex Isolates in Golestan Province, North Iran. Infect Drug Resist 2020; 13:2073-2081. [PMID: 32669860 PMCID: PMC7335844 DOI: 10.2147/idr.s255889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/18/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Despite the moderate incidence of tuberculosis (TB) in many parts of Iran, Golestan province had a permanently higher TB incidence rate than the national average. Moreover, Golestan province receives immigrants, mainly from TB-endemic areas of Iran and neighbor countries. Here, we aimed to characterize the circulating Mycobacterium tuberculosis complex (MTBC) isolates in terms of the spoligotype and drug resistance patterns, across Golestan province. Materials and Methods A set of 166 MTBC isolates was collected during July 2014 to July 2015 and subjected to drug susceptibility testing for first- and second-line anti-TB drugs and spoligotyping. Results Of 166 MTBC isolates, 139 (83.7%) isolates were assigned to 28 spoligotype international types (SITs). The most frequent SITs were SIT127/Ural-2 (n=25, 15.1%), followed by SIT1/Beijing (n=21, 12.7%) and SIT3427/Ural-2 (n=18, 10.8%). The set of 18 isolates (10.8%) showed resistance to at least one drug, which mainly belonged to SIT1/Beijing (n=7, 38.9%), orphan patterns (n=4, 22.2%) and SIT357/CAS1-Delhi (n=3, 16.7%). In addition, four isolates (2.4%) were resistant to pyrazinamide. The analysis of mutation corresponded to resistance to rifampin and isoniazid showed that two isolates had Ser531Leu substitution in rpoB, four isolates had Ser315Thr substitution in katG and one isolate had [C(−15)T] in inhA locus. Conclusion High diversity in spoligotypes of the MTBC isolates and lack of dominant genotype might be due to residence of immigrants in this region and consequent reactivation of latent infection. In addition, due to the presence of extensively drug-resistant (XDR) isolates in Golestan province, it is important to conduct future studies to determine transmission pattern of drug-resistant isolates in this region.
Collapse
Affiliation(s)
- Noormohamad Mansoori
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sirus Amini
- Regional Tuberculosis Reference Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Khanipour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Pourazar Dizaji
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shah Y, Poudel A, Maharjan B, Thapa J, Yamaguchi T, Diab HM, Pandey BD, Solo E, Isoda N, Suzuki Y, Nakajima C. Genetic diversity of Mycobacterium tuberculosis Central Asian Strain isolates from Nepal and comparison with neighboring countries. Trans R Soc Trop Med Hyg 2020; 113:203-211. [PMID: 30668857 DOI: 10.1093/trstmh/try136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis (MDR-TB) is an emerging threat for successful tuberculosis control worldwide. Central Asian Strain (CAS) has been reported as one of the dominant families contributing to MDR-TB in South Asia including Nepal, India and Pakistan. The aim of this study was to better understand the genetic characteristics of MDR-TB CAS family isolates circulating in Nepal and compare the results with neighboring countries. METHODS A total of 145 MDR-TB CAS family isolates collected in Nepal from 2008 to 2013 were analyzed by spoligotyping and mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) analysis. In addition, we compared these data with published data from India and Pakistan to investigate a possible epidemiological link via construction of a minimum spanning tree (MST). RESULTS Spoligotyping analysis exhibited CAS1_Delhi SIT26 (n=60) as the predominant lineage among the MDR-TB CAS family in all three countries. However, the combined analysis with spoligotyping and MIRU-VNTR further discriminated 60 isolates into 49 different types and 5 clusters. Each cluster was composed of 14 isolates with a clustering rate of 23.3%, suggesting ongoing transmissions. Based on MST data from neighboring countries, we elucidated an evolutionary relationship between the two countries, Nepal and India, which could be explained by their open border. CONCLUSION This study identified the evolutionary relationships among MDR-TB CAS1_Delhi subfamily isolates from Nepal and those from neighboring countries.
Collapse
Affiliation(s)
- Yogendra Shah
- National Zoonoses and Food Hygiene Research Centre, Kathmandu, Nepal
| | - Ajay Poudel
- Chitwan Medical College and Teaching Hospital, Department of Microbiology, Bharatpur, Chitwan, Nepal
| | - Bhagwan Maharjan
- German Nepal Tuberculosis Project, Nepal anti-Tuberculosis association/GENETUP, Kalimati, Kathmandu, Nepal.,Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Jeewan Thapa
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Tomoyuki Yamaguchi
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Hassan Mahmoud Diab
- Department of Animal Hygiene, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Basu Dev Pandey
- Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu, Nepal.,Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Eddie Solo
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,University Teaching Hospital, Lusaka, Zambia
| | - Norikazu Isoda
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan
| |
Collapse
|
5
|
Bakuła Z, Javed H, Pleń M, Jamil N, Tahir Z, Jagielski T. Genetic diversity of multidrug-resistant Mycobacterium tuberculosis isolates in Punjab, Pakistan. INFECTION GENETICS AND EVOLUTION 2019; 72:16-24. [DOI: 10.1016/j.meegid.2019.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
|
6
|
Klotoe BJ, Kacimi S, Costa-Conceicão E, Gomes HM, Barcellos RB, Panaiotov S, Haj Slimene D, Sikhayeva N, Sengstake S, Schuitema AR, Akhalaia M, Alenova A, Zholdybayeva E, Tarlykov P, Anthony R, Refrégier G, Sola C. Genomic characterization of MDR/XDR-TB in Kazakhstan by a combination of high-throughput methods predominantly shows the ongoing transmission of L2/Beijing 94-32 central Asian/Russian clusters. BMC Infect Dis 2019; 19:553. [PMID: 31234780 PMCID: PMC6592005 DOI: 10.1186/s12879-019-4201-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background Kazakhstan remains a high-burden TB prevalence country with a concomitent high-burden of multi-drug resistant tuberculosis. For this reason, we performed an in depth genetic diversity and population structure characterization of Mycobacterium tuberculosis complex (MTC) genetic diversity in Kazakhstan with both patient and community benefit. Methods A convenience sample of 700 MTC DNA cultures extracts from 630 tuberculosis patients recruited from 12 out of 14 regions in Kazakhstan, between 2010 and 2015, was independently studied by high-throughput hybridization-based methods, TB-SPRINT (59-Plex, n = 700), TB-SNPID (50-Plex, n = 543). DNA from 391 clinical isolates was successfully typed by two methods. To resolve the population structure of drug-resistant clades in more detail two complementary assays were run on the L2 isolates: an IS6110-NTF insertion site typing assay and a SigE SNP polymorphism assay. Results Strains belonged to L2/Beijing and L4/Euro-American sublineages; L2/Beijing prevalence totaled almost 80%. 50% of all samples were resistant to RIF and to INH., Subtyping showed that: (1) all L2/Beijing were “modern” Beijing and (2) most of these belonged to the previously described 94–32 sublineage (Central Asian/Russian), (3) at least two populations of the Central Asian/Russian sublineages are circulating in Kazakhstan, with different evolutionary dynamics. Conclusions For the first time, the global genetic diversity and population structure of M. tuberculosis genotypes circulating in Kazakhstan was obtained and compared to previous local studies. Results suggest a region-specific spread of a very limited number of L2/Beijing clonal complexes in Kazakhstan many strongly associated with an MDR phenotype. Electronic supplementary material The online version of this article (10.1186/s12879-019-4201-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B J Klotoe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - S Kacimi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - E Costa-Conceicão
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - H M Gomes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Laboratory of Molecular Biology Applied to Mycobacteria, FIOCRUZ, Rio de Janeiro, Brazil
| | - R B Barcellos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Center of Scientific and Technological Development (CDCT), Secretary of Health of Rio Grande do Sul State (SES/RS), Porto Alegre, Brazil
| | - S Panaiotov
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - D Haj Slimene
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Institut Pasteur de Tunisie, Tunis, Tunisie
| | - N Sikhayeva
- National Centre for Biotechnology, Astana, Kazakhstan
| | - S Sengstake
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - A R Schuitema
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - M Akhalaia
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - A Alenova
- National Centre for Tuberculosis Problems, Almaty, Kazakhstan
| | | | - P Tarlykov
- National Centre for Biotechnology, Astana, Kazakhstan
| | - R Anthony
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - G Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - C Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
7
|
Ali S, Khan MT, Anwar Sheed K, Khan MM, Hasan F. Spoligotyping analysis of Mycobacterium tuberculosis in Khyber Pakhtunkhwa area, Pakistan. Infect Drug Resist 2019; 12:1363-1369. [PMID: 31190924 PMCID: PMC6535427 DOI: 10.2147/idr.s198314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Spoligotyping is a reproducible, reverse hybridization approach for genotyping of Mycobacterium tuberculosis complex (MTBC). Molecular typing of MTBC is helpful for understanding and controlling tuberculosis epidemics. Methods: Spoligotyping was performed on 166 clinical isolates of Mycobacterium tuberculosis (MTB) collected from 25 districts of Khyber Pakhtunkhwa, Pakistan. Results were compared to SITVIT2, an online database developed by the Institut Pasteur de la Guadeloupe, France. Results: Spoligotyping results showed that 145 strains (88%) displayed known patterns while 21 (12%) were new. Lineage 3/Central Asian strain (L3/CAS) was the predominant family (73%, χ2=19.9, P=0.001), followed by L2/Beijing (5.4%) and L4 (4.2%). L3/CAS1-Delhi was the major sublineage (82%) among the L3/CAS family (χ2=664, P=0.0001). Analysis showed that the majority of the clinical isolates with an unknown pattern had an evolutionary link with the L3/CAS strain, and nine (5.4%) of the unknown strains were epidemiologically linked and were tentatively named L3/CAS-KP (Khyber Pakhtunkhwa). Conclusion: The present study demonstrated that L3/CAS is the predominant lineage of MTB, widely distributed in different areas of the Khyber Pakhtunkhwa province of Pakistan. Spoligotyping patterns of some clinical isolates could not be matched to other reported patterns in an international database. Other tools, such as mycobacterial interspersed repetitive unit–variable number tandem repeat (MIRU-VNTR), will be helpful in future investigations into the epidemiological characteristics of clinical isolates in the Khyber Pakhtunkhwa province.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Khan Anwar Sheed
- Provincial TB Reference Laboratory, Provincial TB Control Program, Khyber Pakhtunkhwa, Pakistan
| | | | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
8
|
Genetic diversity of Mycobacterium tuberculosis complex isolates circulating in an area with high tuberculosis incidence: Using 24-locus MIRU-VNTR method. Tuberculosis (Edinb) 2018; 112:89-97. [PMID: 30205974 DOI: 10.1016/j.tube.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/15/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
We aimed to determine the genetic diversity, phylogenetic relationship and transmission dynamics of Mycobacterium tuberculosis complex (MTBC) genotypes in an area with high tuberculosis (TB) incidence. A set of 164 MTBC isolates from new TB patients of Golestan province, Iran, were subjected to genotyping using the standard 24-locus MIRU-VNTR method. Recent TB transmission was evaluated and phylogenetic relationships were analysed by minimum spanning tree and cluster-graph methods. Among the 164 isolates, 132 distinct patterns were detected. The 48 clustered isolates (29.3%) were distributed into 16 clusters ranging in size from 2 to 12 isolates. The most frequent genotype was Central Asian Strain/Delhi (CAS/Delhi) (n = 67, 40.8%), followed by NEW-1 (n = 53, 32.3%) and Beijing (n = 19, 11.6%) genotypes. Thirty five (72.9%) of NEW-1 isolates were recovered from immigrant patients and 84.2% (n = 16) of Beijing genotypes recovered from native cases. Statistically significant association was found between clustering and smoking (p = 0.047), drug addiction (p = 0.01) and prison history (p = 0.003). The estimated proportion of recent transmission was 19.5%. Presence of highly diverse MTBC isolates circulating in this province without a dominant genotype might be a consequence of importation of various genotypes in this area.
Collapse
|
9
|
Klotoe BJ, Molina-Moya B, Gomes HM, Gomgnimbou MK, Oliveira Suzarte L, Féres Saad MH, Ali S, Dominguez J, Pimkina E, Zholdybayeva E, Sola C, Refrégier G. TB-EFI, a novel 18-Plex microbead-based method for prediction of second-line drugs and ethambutol resistance in Mycobacterium tuberculosis complex. J Microbiol Methods 2018; 152:10-17. [PMID: 29913189 DOI: 10.1016/j.mimet.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Several diagnostic tests are being developed to detect drug resistance in tuberculosis. In line with previous developments detecting rifampicin and isoniazid resistance using microbead-based systems (spoligoriftyping and TB-SPRINT), we present here an assay called TB-EFI detecting mutations involved in resistance to ethambutol, fluoroquinolones and the three classical injectable drugs (kanamycin, amikacin and capreomycin) in Mycobacterium tuberculosis. The proposed test includes both wild-type and mutant probes for each targeted locus. Basic analysis can be performed manually. An upgraded interpretation is made available in Excel 2016®. Using a reference set of 61 DNA extracts, we show that TB-EFI provides perfect concordance with pyrosequencing. Concordance between genotypic resistance and phenotypic DST was relatively good (72 to 98% concordance), with lower efficiency for fluoroquinolones and ethambutol due to some untargeted mutations. When compared to phenotypical resistance, performances were similar to those obtained with Hain MTBDRsl assay, possibly thanks to the use of automatized processing of data although some mutations involved in fluoroquinolone resistance could not be included. When applied on three uncharacterized sets, phenotype could be predicted for 51% to 98% depending on the setting and the drug investigated, detecting one extensively drug-resistant isolate in each of a Pakistan and a Brazilian set of 91 samples, and 9 XDR among 43 multi-resistant Kazakhstan samples. By allowing high-throughput detection of second-line drugs resistance and of resistance to ethambutol that is often combined to second-line treatments, TB-EFI is a cost-effective assay for large-scale worldwide surveillance of resistant tuberculosis and XDR-TB control.
Collapse
Affiliation(s)
- Bernice J Klotoe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Barbara Molina-Moya
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Harrison Magdinier Gomes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France; Laboratório de Biologia Molecular Aplicada à Micobactérias, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Michel K Gomgnimbou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France; Centre Muraz, Bobo-Dioulasso, Burkina Faso; Univ. Polytech, Bobo-Dioulasso, Burkina Faso
| | - Lorenna Oliveira Suzarte
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Maria H Féres Saad
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Av. Brasil, 4365 - 20245, Rio de Janeiro, Brazil
| | - Sajid Ali
- Microbiology Department, Quaid-i-Azam University, Islamabad, Pakistan
| | - José Dominguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Edita Pimkina
- Infectious Diseases and Tuberculosis Hospital, Affiliate of Vilnius University Hospital Santariskiu klinikos, Vilnius, Lithuania
| | - Elena Zholdybayeva
- National Center for Biotechnology, Astana, Kazakhstan; Universitat Autònoma de Barcelona. CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
10
|
Molina-Moya B, Gomgnimbou MK, Lafoz C, Lacoma A, Prat C, Refrégier G, Samper S, Dominguez J, Sola C. Molecular Characterization of Mycobacterium tuberculosis Strains with TB-SPRINT. Am J Trop Med Hyg 2017; 97:806-809. [PMID: 28722603 DOI: 10.4269/ajtmh.16-0782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We evaluated Tuberculosis-Spoligo-Rifampicin-Isoniazid Typing (TB-SPRINT), a microbead-based method for spoligotyping and detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis. For that, 67 M. tuberculosis complex strains were retrospectively selected. Membrane-based spoligotyping, restriction fragment length polymorphism, DNA sequencing/pyrosequencing of rpoB, katG, and inhA promoter, TB-SPRINT, and SNP typing were performed. Concordance between spoligotyping methods was 99.6% (2,785/2,795 spoligotype data points). For most of the discordant cases, the same lineage was assigned with both methods. Concordance between phenotypic drug susceptibility testing and TB-SPRINT for detecting rifampicin and isoniazid resistance was 98.4% (63/64) and 93.8% (60/64), respectively. Concordance between DNA sequencing/pyrosequencing and TB-SPRINT for detecting mutations in rpoB, katG, and inhA were 98.4% (60/61), 100% (64/64), and 96.9% (62/64), respectively. In conclusion, TB-SPRINT is a rapid and easy-to-perform assay for genotyping and detecting drug resistance in a single tube; therefore, it may be a useful tool to improve epidemiological surveillance.
Collapse
Affiliation(s)
- Barbara Molina-Moya
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Michel Kiréopori Gomgnimbou
- Centre Muraz, Bobo-Dioulasso, Burkina Faso.,Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carmen Lafoz
- Instituto Aragonés de Ciencias de la Salud, Fundación Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Alicia Lacoma
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cristina Prat
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Guislaine Refrégier
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sofia Samper
- Instituto Aragonés de Ciencias de la Salud, Fundación Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Dominguez
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Christophe Sola
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Shah Y, Maharjan B, Thapa J, Poudel A, Diab HM, Pandey BD, Solo ES, Isoda N, Suzuki Y, Nakajima C. High diversity of multidrug-resistant Mycobacterium tuberculosis Central Asian Strain isolates in Nepal. Int J Infect Dis 2017. [PMID: 28627432 DOI: 10.1016/j.ijid.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) poses a major public health problem in Nepal. Although it has been reported as one of the dominant genotypes of MTB in Nepal, little information on the Central Asian Strain (CAS) family is available, especially isolates related to multidrug resistance (MDR) cases. This study aimed to elucidate the genetic and epidemiological characteristics of MDR CAS isolates in Nepal. METHODS A total of 145 MDR CAS isolates collected in Nepal from 2008 to 2013 were characterized by spoligotyping, mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) analysis, and drug resistance-associated gene sequencing. RESULTS Spoligotyping analysis showed CAS1_Delhi SIT26 as predominant (60/145, 41.4%). However, by combining spoligotyping and MIRU-VNTR typing, it was possible to successfully discriminate all 145 isolates into 116 different types including 18 clusters with 47 isolates (clustering rate 32.4%). About a half of these clustered isolates shared the same genetic and geographical characteristics with other isolates in each cluster, and some of them shared rare point mutations in rpoB that are thought to be associated with rifampicin resistance. CONCLUSIONS Although the data obtained show little evidence that large outbreaks of MDR-TB caused by the CAS family have occurred in Nepal, they strongly suggest several MDR-MTB transmission cases.
Collapse
Affiliation(s)
- Yogendra Shah
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Bhagwan Maharjan
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; German Nepal Tuberculosis Project, Nepal Anti-Tuberculosis Association/GENETUP, Kalimati, Kathmandu, Nepal
| | - Jeewan Thapa
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Ajay Poudel
- Chitwan Medical College Teaching Hospital, Department of Microbiology, Bharatpur, Chitwan, Nepal
| | - Hassan Mahmoud Diab
- Department of Animal Hygiene, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Basu Dev Pandey
- Leprosy Control Division, Department of Health Services, Ministry of Health, Kathmandu, Nepal; Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Eddie S Solo
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Norikazu Isoda
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan.
| |
Collapse
|
12
|
Ullah I, Javaid A, Masud H, Ali M, Basit A, Ahmad W, Younis F, Yasmin R, Khan A, Jabbar A, Husain M, Butt ZA. Rapid detection of Mycobacterium tuberculosis and rifampicin resistance in extrapulmonary tuberculosis and sputum smear-negative pulmonary suspects using Xpert MTB/RIF. J Med Microbiol 2017; 66:412-418. [PMID: 28425873 DOI: 10.1099/jmm.0.000449] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a serious public health problem in developing countries such as Pakistan. Rapid diagnosis of TB and detection of drug resistance are very important for timely and appropriate management of multidrug-resistant TB (MDR-TB). OBJECTIVE The purpose of this study was to determine the diagnostic efficacy of the Xpert MTB/RIF assay for rapid diagnosis of TB and detection of rifampicin (RIF) resistance in extrapulmonary and smear-negative pulmonary TB suspects. METHODS A total of 98 bronchoalveolar lavage fluid (BALF) and 168 extrapulmonary specimens were processed by Xpert MTB/RIF. Culture results are considered as the gold standard for diagnosis of TB, and drug susceptibility testing for detection of RIF resistance. Diagnostic efficacy was measured in terms of sensitivity, specificity and positive and negative predictive values. RESULTS The Xpert MTB/RIF assay detected 40 (40.8 %) of 98 BALF of presumptive pulmonary TB and 60 (35.7 %) of 168 extrapulmonary specimens. Sensitivity and specificity of the Xpert MTB/RIF assay for detection of TB was 86 and 88.4 %, respectively. The positive predictive value was 71.5 % while negative predictive value was 95.1 %. CONCLUSION The Xpert MTB/RIF assay is a rapid and simple technique with high sensitivity and specificity for diagnosing TB and detecting drug resistance in extrapulmonary and smear-negative TB cases.
Collapse
Affiliation(s)
- Irfan Ullah
- Programmatic Management of Drug resistant TB Unit, TB Culture Laboratory, Mufti Mehmood Memorial Teaching Hospital, Dera Ismail Khan, Pakistan.,Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arshad Javaid
- Programmatic Management of Drug resistant TB Pulmonology, Lady Reading Hospital, Peshawar, Pakistan
| | - Haleema Masud
- Al-Shifa School of Public Health, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan
| | - Mazhar Ali
- Programmatic Management of Drug resistant TB Pulmonology, Lady Reading Hospital, Peshawar, Pakistan
| | - Anila Basit
- Programmatic Management of Drug resistant TB Pulmonology, Lady Reading Hospital, Peshawar, Pakistan
| | - Waqas Ahmad
- Department of Mathematics, University of Science and Technology, Bannu, Pakistan
| | - Faisal Younis
- Programmatic Management of Drug resistant TB Unit, TB Culture Laboratory, Mufti Mehmood Memorial Teaching Hospital, Dera Ismail Khan, Pakistan
| | - Rehana Yasmin
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Afsar Khan
- Programmatic Management of Drug resistant TB Pulmonology, Lady Reading Hospital, Peshawar, Pakistan
| | - Abdul Jabbar
- Department of Medical lab Technology, University of Haripur, Haripur, Pakistan
| | - Masroor Husain
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Zahid Ahmad Butt
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Yasmin M, Le Moullec S, Siddiqui RT, De Beer J, Sola C, Refrégier G. Quick and cheap MIRU-VNTR typing of Mycobacterium tuberculosis species complex using duplex PCR. Tuberculosis (Edinb) 2016; 101:160-163. [DOI: 10.1016/j.tube.2016.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 11/28/2022]
|
14
|
A cross-sectional study about knowledge and attitudes toward multidrug-resistant and extensively drug-resistant tuberculosis in a high-burden drug-resistant country. Int J Mycobacteriol 2016; 5:128-34. [PMID: 27242222 DOI: 10.1016/j.ijmyco.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/28/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE/BACKGROUND Tuberculosis (TB) is a leading cause of death worldwide, with new threats of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. Pakistan is the fifth highest among high-burden TB countries and the fourth highest among high-burden drug-resistant-TB countries. Pakistan is the sixth most populous country in the world, and Pakistani youth is the highest population group in Pakistan and second in the world. This study was aimed at assessing the understanding, awareness, and mindset of university students toward TB, MDR TB, and XDR TB in Lahore. METHODS A cross-sectional questionnaire-based study was performed on 1137 individuals from three major public-sector universities in Lahore, Pakistan. Information regarding their knowledge and attitude toward MDR and XDR TB was gathered using a structured questionnaire. Data collected was analyzed using SPSS version 20. RESULTS Male (531) and female (606) students were asked about different aspects of MDR and XDR TB. Although 80.47% students had good knowledge about simple TB, a very small fraction had awareness and appropriate knowledge about MDR/XDR-TB. Considering TB as a stigma, only 9.3% students disclosed that they had household TB contact. Only 25% students knew about XDR TB. CONCLUSION Our results indicated that a small fraction of people knew the exact definition and treatment duration of MDR TB and XDR TB in our society. There is a need to increase the awareness and knowledge status of university students about MDR and XDR TB.
Collapse
|
15
|
Ullah I, Javaid A, Tahir Z, Ullah O, Shah AA, Hasan F, Ayub N. Pattern of Drug Resistance and Risk Factors Associated with Development of Drug Resistant Mycobacterium tuberculosis in Pakistan. PLoS One 2016; 11:e0147529. [PMID: 26809127 PMCID: PMC4726587 DOI: 10.1371/journal.pone.0147529] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Background Drug resistant tuberculosis (DR-TB) is a major public health problem in developing countries such as Pakistan. Objective The current study was conducted to assess the frequency of drug resistant tuberculosis including multi drug resistance (MDR- TB) as well as risk factors for development of DR-TB, in Punjab, Pakistan. Methodology Drug susceptibility testing (DST) was performed, using proportion method, for 2367 culture positive Mycobacterium tuberculosis (MTB) cases that were enrolled from January 2012 to December 2013 in the province of Punjab, Pakistan, against first-line anti-tuberculosis drugs. The data was analyzed using statistical software; SPSS version 18. Results Out of 2367 isolates, 273 (11.5%) were resistant to at least one anti-TB drug, while 221 (9.3%) showed MDR- TB. Risk factors for development of MDR-TB were early age (ranges between 10–25 years) and previously treated TB patients. Conclusion DR-TB is a considerable problem in Pakistan. Major risk factors are previous history of TB treatment and younger age group. It emphasizes the need for effective TB control Program in the country.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Programmatic Management of Drug Resistant TB Pulmonology, Lady Reading Hospital Peshawar, Pakistan
| | - Arshad Javaid
- Programmatic Management of Drug Resistant TB Pulmonology, Lady Reading Hospital Peshawar, Pakistan
| | - Zarfishan Tahir
- Department of Bacteriology, Institute of Public Health, Jail Road Lahore, Pakistan
| | - Obaid Ullah
- Department of Bacteriology, Institute of Public Health, Jail Road Lahore, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Najma Ayub
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Azé J, Sola C, Zhang J, Lafosse-Marin F, Yasmin M, Siddiqui R, Kremer K, van Soolingen D, Refrégier G. Genomics and Machine Learning for Taxonomy Consensus: The Mycobacterium tuberculosis Complex Paradigm. PLoS One 2015; 10:e0130912. [PMID: 26154264 PMCID: PMC4496040 DOI: 10.1371/journal.pone.0130912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022] Open
Abstract
Infra-species taxonomy is a prerequisite to compare features such as virulence in different pathogen lineages. Mycobacterium tuberculosis complex taxonomy has rapidly evolved in the last 20 years through intensive clinical isolation, advances in sequencing and in the description of fast-evolving loci (CRISPR and MIRU-VNTR). On-line tools to describe new isolates have been set up based on known diversity either on CRISPRs (also known as spoligotypes) or on MIRU-VNTR profiles. The underlying taxonomies are largely concordant but use different names and offer different depths. The objectives of this study were 1) to explicit the consensus that exists between the alternative taxonomies, and 2) to provide an on-line tool to ease classification of new isolates. Genotyping (24-VNTR, 43-spacers spoligotypes, IS6110-RFLP) was undertaken for 3,454 clinical isolates from the Netherlands (2004-2008). The resulting database was enlarged with African isolates to include most human tuberculosis diversity. Assignations were obtained using TB-Lineage, MIRU-VNTRPlus, SITVITWEB and an algorithm from Borile et al. By identifying the recurrent concordances between the alternative taxonomies, we proposed a consensus including 22 sublineages. Original and consensus assignations of the all isolates from the database were subsequently implemented into an ensemble learning approach based on Machine Learning tool Weka to derive a classification scheme. All assignations were reproduced with very good sensibilities and specificities. When applied to independent datasets, it was able to suggest new sublineages such as pseudo-Beijing. This Lineage Prediction tool, efficient on 15-MIRU, 24-VNTR and spoligotype data is available on the web interface “TBminer.” Another section of this website helps summarizing key molecular epidemiological data, easing tuberculosis surveillance. Altogether, we successfully used Machine Learning on a large dataset to set up and make available the first consensual taxonomy for human Mycobacterium tuberculosis complex. Additional developments using SNPs will help stabilizing it.
Collapse
Affiliation(s)
- Jérôme Azé
- LIRMM UM CNRS, UMR 5506, 860 rue de St Priest, 34095 Montpellier cedex 5, France
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Jian Zhang
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Florian Lafosse-Marin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Memona Yasmin
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Lehtrar Road, Nilore, Islamabad, Pakistan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box # 577, Jhang Road, Faisalabad, Pakistan
| | - Rubina Siddiqui
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box # 577, Jhang Road, Faisalabad, Pakistan
| | - Kristin Kremer
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Pulmonary Diseases and Department of Microbiology, Radbout University Nijmegen Medical Centre, University Lung Centre Dekkerswald, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
- * E-mail:
| |
Collapse
|
17
|
Recent Advances in Tuberculosis Diagnosis: IGRAs and Molecular Biology. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2014. [DOI: 10.1007/s40506-014-0034-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|