1
|
Hou J, Tan Y, Huang Y, Li H, Li D, Liu X, Li J, Hu Y, Xiang J. Skin microbiota during metamorphosis of Quasipaa spinosa: guidance for maintaining mucosal symbiotic microbial flora homeostasis in early life of frogs. Front Microbiol 2024; 15:1453617. [PMID: 39611088 PMCID: PMC11602500 DOI: 10.3389/fmicb.2024.1453617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
The skin microbiota plays an essential role in helping the host adapt to different environments and maintain health. By examining the characteristics of amphibian skin flora alongside ontogenetic traits, we can gain insights into the adaptation mechanisms of amphibian skin flora to environmental changes during development. In this study, we analyzed the skin microbiota of Quasipaa spinosa during metamorphosis using Illumina sequencing. Venn diagrams and UpSet analysis revealed that the LTS (hindlimb tadpoles' skin, aquatic habitat) and FTS (forelimb tadpoles' skin, shift from aquatic to amphibious habitats) groups exhibited a higher number of unique amplicon sequence variants (ASVs), while the TS (tadpoles' skin, aquatic habitat) and LFS (land frogs' skin, amphibious habitats) groups displayed a lower abundance of ASVs. Diversity analysis indicated similarities in the microorganisms between the LTS and the FTS groups, with higher microbial diversity compared to the TS and the LFS groups. Additionally, microbial co-occurrence network analysis indicated a more stable microecology in the LTS group and FTS group. Proteobacteria, Firmicutes, and Bacteroidota were identified as the dominant phyla, although their relative abundances varied widely among groups. LEfSe (Linear discriminant analysis effect size) showed significant enrichment of beneficial bacteria at various developmental stages, including Bacteroides, Bacillus, and Lactobacillus. Functional prediction analysis shows significant differences in skin microorganism functions across various developmental stages, with a primary focus on metabolic functions. This study provides valuable insights into the compositional dynamics of skin microbiota in Q. spinosa at various developmental stages.
Collapse
Affiliation(s)
- Jinliang Hou
- Fisheries College, Hunan Agricultural University, Changsha, China
| | - Yu Tan
- Xiangtan Animal Husbandry and Aquatic Technology Research and Promotion Center, Xiangtan, China
| | - Yanfei Huang
- Fisheries College, Hunan Agricultural University, Changsha, China
| | - Hong Li
- Fisheries College, Hunan Agricultural University, Changsha, China
| | - Deliang Li
- Fisheries College, Hunan Agricultural University, Changsha, China
| | - Xinhua Liu
- Fisheries College, Hunan Agricultural University, Changsha, China
| | - Junhua Li
- Fisheries College, Hunan Agricultural University, Changsha, China
| | - Yazhou Hu
- Fisheries College, Hunan Agricultural University, Changsha, China
| | - Jianguo Xiang
- Fisheries College, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Zheng WC, Cheng XY, Tao YH, Mao YS, Lu CP, Lin ZH, Chen J. Assessment of the antimicrobial and immunomodulatory activity of QS-CATH, a promising therapeutic agent isolated from the Chinese spiny frogs (Quasipaa spinosa). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109943. [PMID: 38810897 DOI: 10.1016/j.cbpc.2024.109943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Cathelicidins are important antimicrobial peptides in various vertebrate species where they are crucial parts of the innate immune system. The current understanding of amphibian cathelicidins is limited, particularly with regard to their immunomodulatory effects. To address this knowledge gap, we produced the cDNA sequence of the cathelicidin gene from a skin transcriptome of the Chinese spiny frog Quasipaa spinosa. The amino acid sequence of the Quasipaa spinosa cathelicidin (QS-CATH) was predicted to consist of a signal peptide, a cathelin domain, and a mature peptide. Comparative analysis of the QS-CATH amino acid sequence with that of other amphibian cathelicidins revealed high variability in the functional mature peptide among amphibians, whereas the cathelin domain was conserved. The QS-CATH gene was expressed in several tissues, with the highest level of expression in the spleen. Upregulation of QS-CATH after Aeromonas hydrophila infection occurred in the kidney, gut, spleen, skin, and liver. Chemically synthesized QS-CATH exhibited pronounced antibacterial activity against Shigella flexneri, Staphylococcus warneri, Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Furthermore, QS-CATH disrupted the cell membrane integrity of S. flexneri, as evidenced by a lactate dehydrogenase release assay, and it hydrolyzed the genomic DNA of S. flexneri. Additionally, QS-CATH elicited chemotaxis and modulated the expression of inflammatory cytokine genes in RAW264.7 mouse leukemic monocyte/macrophage cells. These findings confirm the antimicrobial effects of amphibian cathelicidin and its ability to influence immune cell function. This will expedite the potential utilization of amphibian antimicrobial peptides as therapeutic agents.
Collapse
Affiliation(s)
- Wei-Cheng Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ecological Forestry Development Center of Suichang County, Lishui 323000, China
| | - Xiao-Yun Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ecological Forestry Development Center of Suichang County, Lishui 323000, China.
| | - Yu-Hui Tao
- Forestry Bureau of Jinyun County, Lishui 321400, China
| | - Yue-Song Mao
- Ecological Forestry Development Center of Suichang County, Lishui 323000, China
| | - Cheng-Pu Lu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; College of Ecology, Lishui University, Lishui 323000, China; Lishui Institute for Ecological Economy Research, Lishui 323000, China.
| |
Collapse
|
3
|
Yu SS, Zhao ZH, Gong XF, Fan XL, Lin ZH, Chen J. Antimicrobial and immunomodulatory activity of beta-defensin from the Chinese spiny frog (Quasipaa spinosa). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104264. [PMID: 34551359 DOI: 10.1016/j.dci.2021.104264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The β-defensins are important components of the vertebrate innate immune system. While mammalian β-defensins have wide-ranging antibacterial and immunomodulatory activities, those of amphibians remain largely uncharacterised. In this study, β-defensin cDNA was identified from the skin transcriptome of the Chinese spiny frog Quasipaa spinosa. This β-defensin (QS-BD) consists of a signal and a mature peptide. Sequence alignments with other amphibian β-defensins showed conservation of the functional mature peptide and that its closest relative is β-defensin from Zhangixalus puerensis. Synthetic QS-BD showed antibacterial activity against Vibrio vulnificus, Vibrio harveyi, Streptococcus iniae, and Aeromonas hydrophila. QS-BD showed bactericidal activity by destroying the cell membrane integrity, but did not hydrolyse genomic DNA. QS-BD treatment promoted respiratory bursts and upregulated the expression of interleukin-1β and tumour necrosis factor-α in the murine leukemic monocyte/macrophage cell line RAW264.7. This is the first demonstration of immunomodulatory activity by an amphibian β-defensin.
Collapse
Affiliation(s)
- Shui-Sheng Yu
- College of Ecology, Lishui University, Lishui, 323000, China; Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Zeng-Hui Zhao
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xiao-Fei Gong
- College of Ecology, Lishui University, Lishui, 323000, China; Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
4
|
Liu ZP, Gu WB, Wang SY, Wang LZ, Zhou YL, Dong WR, Shu MA. Functional differences of three CXCL10 homologues in the giant spiny frog Quasipaa spinosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103719. [PMID: 32344047 DOI: 10.1016/j.dci.2020.103719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Chemokines are a superfamily of structurally related chemotactic cytokines exerting significant roles in acting as a bridge between the innate and adaptive immune responses. In this study, we identified three CXC motif chemokine 10 (CXCL10) homologues (QsCXCL10-1, QsCXCL10-2 and QsCXCL10-3) from giant spiny frog Quasipaa spinosa. All three deduced QsCXCL10 proteins contained four conserved cysteine residues as found in other known CXC chemokines. Phylogenetic analysis showed that QsCXCL10-1, 2, 3 and other CXCL10s in amphibian were grouped together to form a separate clade. These three QsCXCL10s were highly expressed in spleen and blood. Upon infection with Staphylococcus aureus or Aeromonas hydrophila, the expressions of QsCXCL10s were markedly increased in spleen and blood during biotic stresses. Meanwhile, the QsCXCL10s transcription in liver could also be up-regulated under abiotic stresses such as cold and heat stresses. The recombinant proteins of frog CXCL10 homologues were produced and purified in E. coli and possessed similar but differential bioactivities. Both rCXCL10-1 and rCXCL10-2 had strong effects on the up-regulation of pro-inflammatory cytokines (TNF-α, IL-1β and IL-8) in vivo, whereas rCXCL10-3 induced a weak expression of these cytokines. Moreover, the rCXCL10-1 and rCXCL10-2 could strongly promote splenocyte proliferation and induce lymphocytes migration, while rCXCL10-3 had limited effects on these biological processes. All three frog chemokines triggered their functional activities by engaging CXC motif chemokine receptor 3 (CXCR3). Taken together, these results revealed that the three QsCXCL10s had similar but differential functional activities in mediating immune responses and host defenses, which might contribute to a better understanding of the functional evolution of CXCL10 in vertebrates.
Collapse
Affiliation(s)
- Ze-Peng Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao-Yu Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Lau Q, Igawa T, Minei R, Kosch TA, Satta Y. Transcriptome analyses of immune tissues from three Japanese frogs (genus Rana ) reveals their utility in characterizing major histocompatibility complex class II. BMC Genomics 2017; 18:994. [PMID: 29281968 PMCID: PMC5745589 DOI: 10.1186/s12864-017-4404-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023] Open
Abstract
Background In Japan and East Asia, endemic frogs appear to be tolerant or not susceptible to chytridiomycosis, a deadly amphibian disease caused by the chytrid fungus Batrachochytridium dendrobatidis (Bd). Japanese frogs may have evolved mechanisms of immune resistance to pathogens such as Bd. This study characterizes immune genes expressed in various tissues of healthy Japanese Rana frogs. Results We generated transcriptome data sets of skin, spleen and blood from three adult Japanese Ranidae frogs (Japanese brown frog Rana japonica, the montane brown frog Rana ornativentris, and Tago’s brown frog Rana tagoi tagoi) as well as whole body of R. japonica and R. ornativentris tadpoles. From this, we identified tissue- and stage-specific differentially expressed genes; in particular, the spleen was most enriched for immune-related genes. A specific immune gene, major histocompatibility complex class IIB (MHC-IIB), was further characterized due to its role in pathogen recognition. We identified a total of 33 MHC-IIB variants from the three focal species (n = 7 individuals each), which displayed evolutionary signatures related to increased MHC variation, including balancing selection. Our supertyping analyses of MHC-IIB variants from Japanese frogs and previously studied frog species identified potential physiochemical properties of MHC-II that may be important for recognizing and binding chytrid-related antigens. Conclusions This is one of the first studies to generate transcriptomic resources for Japanese frogs, and contributes to further understanding the immunogenetic factors associated with resistance to infectious diseases in amphibians such as chytridiomycosis. Notably, MHC-IIB supertyping analyses identified unique functional properties of specific MHC-IIB alleles that may partially contribute to Bd resistance, and such properties provide a springboard for future experimental validation. Electronic supplementary material The online version of this article (10.1186/s12864-017-4404-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quintin Lau
- Department of Evolutionary Studies of Biosystems, Sokendai, The Graduate University for Advanced Studies, Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan.
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryuhei Minei
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266, Nagahama, Shiga, 526-0829, Japan
| | - Tiffany A Kosch
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Sokendai, The Graduate University for Advanced Studies, Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
6
|
Zhang QP, Hu WF, Zhou TT, Kong SS, Liu ZF, Zheng RQ. Interspecies introgressive hybridization in spiny frogs Quasipaa (Family Dicroglossidae) revealed by analyses on multiple mitochondrial and nuclear genes. Ecol Evol 2017; 8:1260-1270. [PMID: 29375796 PMCID: PMC5773314 DOI: 10.1002/ece3.3728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
Introgression may lead to discordant patterns of variation among loci and traits. For example, previous phylogeographic studies on the genus Quasipaa detected signs of genetic introgression from genetically and morphologically divergent Quasipaa shini or Quasipaa spinosa. In this study, we used mitochondrial and nuclear DNA sequence data to verify the widespread introgressive hybridization in the closely related species of the genus Quasipaa, evaluate the level of genetic diversity, and reveal the formation mechanism of introgressive hybridization. In Longsheng, Guangxi Province, signs of asymmetrical nuclear introgression were detected between Quasipaa boulengeri and Q. shini. Unidirectional mitochondrial introgression was revealed from Q. spinosa to Q. shini. By contrast, bidirectional mitochondrial gene introgression was detected between Q. spinosa and Q. shini in Lushan, Jiangxi Province. Our study also detected ancient hybridizations between a female Q. spinosa and a male Q. jiulongensis in Zhejiang Province. Analyses on mitochondrial and nuclear genes verified three candidate cryptic species in Q. spinosa, and a cryptic species may also exist in Q. boulengeri. However, no evidence of introgressive hybridization was found between Q. spinosa and Q. boulengeri. Quasipaa exilispinosa from all the sampling localities appeared to be deeply divergent from other communities. Our results suggest widespread introgressive hybridization in closely related species of Quasipaa and provide a fundamental basis for illumination of the forming mechanism of introgressive hybridization, classification of species, and biodiversity assessment in Quasipaa.
Collapse
Affiliation(s)
- Qi-Peng Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Wen-Fang Hu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Ting-Ting Zhou
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Shen-Shen Kong
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Zhi-Fang Liu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Rong-Quan Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China.,Xingzhi College of Zhejiang Normal University Jinhua Zhejiang China
| |
Collapse
|
7
|
Liu H, Xue F, Gong J, Wan Q, Fang S. Limited polymorphism of the functional MHC class II B gene in the black-spotted frog ( Pelophylax nigromaculatus) identified by locus-specific genotyping. Ecol Evol 2017; 7:9860-9868. [PMID: 29238521 PMCID: PMC5723586 DOI: 10.1002/ece3.3408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/23/2022] Open
Abstract
Amphibians can be more vulnerable to environmental changes and diseases than other species because of their complex life cycle and physiological requirements. Therefore, understanding the adaptation of amphibians to environmental changes is crucial for their conservation. Major histocompatibility complex (MHC) presents an excellent tool for the investigation of adaptive variations and the assessment of adaptive potential because it can be under strong diversifying selection. Here, we isolated the MHC class II B (MHCIIB) gene from cDNA sequences of the black-spotted frog (Pelophylax nigromaculatus), a widespread amphibian species in China, and designed locus-specific primers to characterize adaptive variability of this amphibian. Ten alleles were identified from 67 individual frogs of three populations and no more than two alleles were present in each individual animal. Furthermore, none of the sequences had indels or/and stop codons, which is in good agreement with locus-specific amplification of a functional gene. However, we found low polymorphism at both nucleotide and amino acid levels, even in the antigen-binding region. Purifying selection acting at this locus was supported by the findings that the dN/dS ratio across all alleles was below 1 and that negatively selected sites were detected by different methods. Allele frequency distributions were significantly different among geographic populations, indicating that physiographic factors may have strong effect on the genetic structure of the black-spotted frog. This study revealed limited polymorphism of three adjacent black-spotted frog populations at the functional MHCIIB locus, which may be attributed to region-specific differences. The locus-specific genotyping technique developed in this study would provide a foundation for future studies on adaptive divergence among different frog populations.
Collapse
Affiliation(s)
- Hong‐Yi Liu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered WildlifeCollege of Life SciencesZhejiang UniversityHangzhouChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - Fei Xue
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered WildlifeCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Jie Gong
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered WildlifeCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Qiu‐Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered WildlifeCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Sheng‐Guo Fang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Centre for Gene Resources of Endangered WildlifeCollege of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
8
|
Qi Z, Zhang Q, Wang Z, Ma T, Zhou J, Holland JW, Gao Q. Transcriptome analysis of the endangered Chinese giant salamander (Andrias davidianus): Immune modulation in response to Aeromonas hydrophila infection. Vet Immunol Immunopathol 2015; 169:85-95. [PMID: 26620078 DOI: 10.1016/j.vetimm.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/17/2022]
Abstract
The endangered Chinese giant salamander (Andrias davidianus) is the largest extant amphibian species. Disease outbreaks represent one of the major factors threatening A. davidianus populations in the wild and the viability of artificial breeding programmes. Development of future immune therapies to eliminate infectious disease in A. davidianus is dependent on a thorough understanding of the immune mechanisms elicited by pathogen encounters. To this end we have undertaken, for the first time in amphibians, differential transcriptome analysis of the giant salamander response to Aeromonas hydrophila, one of the most devastating pathogens affecting amphibian populations. Out of 87,204 non-redundant consensus unigenes 19,216 were annotated, 6834 of which were upregulated and 906 down-regulated following bacterial infection. 2058 unigenes were involved with immune system processes, including 287 differentially expressed unigenes indicative of the impact of bacterial infection on several innate and adaptive immune pathways in the giant salamander. Other pathways not directly associated with immune-related activity were differentially expressed, including developmental, structural, molecular and growth processes. Overall, this work provides valuable insights into the underlying immune mechanisms elicited during bacterial infection in amphibians that may aid in the future development of disease control measures in protecting the Chinese giant salamander. With the unique position of amphibians in the transition of tetrapods from aquatic to terrestrial habitats, our study will also be invaluable towards the further understanding of the evolution of tetrapod immunity.
Collapse
Affiliation(s)
- Zhitao Qi
- Key Laboratory of Aquaculture and Ecology of Coastal Pools in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China; School of Ocean and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Qihuan Zhang
- School of Ocean and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zisheng Wang
- Key Laboratory of Aquaculture and Ecology of Coastal Pools in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China; School of Ocean and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tianyi Ma
- Key Laboratory of Aquaculture and Ecology of Coastal Pools in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Jie Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430070, China
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Qian Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430070, China.
| |
Collapse
|