1
|
Douglas KO, Punu G, Van Vliet N. Prioritization of zoonoses of wildlife origin for multisectoral one health collaboration in Guyana, 2022. One Health 2024; 18:100730. [PMID: 38644970 PMCID: PMC11031778 DOI: 10.1016/j.onehlt.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Background The human population in Guyana, located on the South American continent, is vulnerable to zoonotic diseases due to an appreciable reliance on Neotropical wildlife as a food source and for trade. An existing suboptimal health surveillance system may affect the effective monitoring of important zoonotic diseases. To effectively address this deficit, a One Health zoonotic disease prioritization workshop was conducted to identify nationally significant zoonoses. Methods Prioritization of zoonotic diseases was conducted for the first time in Guyana & Caribbean region using literature review, prioritization criteria and a risk prioritization tool in combination with a consultative One Health workshop. This involved multisectoral experts from varied disciplines of social, human, animal, and environmental health to prioritize zoonotic diseases using a modified semi-quantitative One Health Zoonotic Disease Prioritization (OHZDP) tool. The inclusion and exclusion criteria were applied to pathogen hazards in existence among wildlife in Guyana during the hazard identification phase. Results In total, fifty zoonoses were chosen for prioritization. Based on their weighted score, prioritized diseases were ranked in order of relative importance using a one-to-five selection scale. In Guyana, this zoonotic disease prioritization method is the first significant step toward bringing together specialists from the fields of human, animal, and environmental health. Following discussion of the OHZDP Tool output among disease experts, a final zoonotic disease list, including tuberculosis, leptospirosis, gastroenteritis, rabies, coronavirus, orthopoxvirus, viral hemorrhagic fevers, and hepatitis were identified as the top eight priority zoonoses in Guyana. Conclusions This represents the first prioritization of nationally significant zoonotic diseases in Guyana and the English-speaking Caribbean. This One Health strategy to prioritize these eight zoonoses of wildlife origin is a step that will support future tracking and monitoring for disease prevalence among humans and wildlife and can be used as a decision-making guide for policymakers and stakeholders in Guyana.
Collapse
Affiliation(s)
- Kirk O. Douglas
- Centre for Biosecurity Studies, The University of the West Indies, Cave Hill Campus, Cave Hill BB11000, Barbados
| | - Govindra Punu
- Center for International Forestry Research (CIFOR), Jalan CIFOR Situ Gede, Bogor Barat, Bogor 16115, Jawa Barat, Indonesia
| | - Nathalie Van Vliet
- Center for International Forestry Research (CIFOR), Jalan CIFOR Situ Gede, Bogor Barat, Bogor 16115, Jawa Barat, Indonesia
| |
Collapse
|
2
|
Asare P, Asante-Poku A, Osei-Wusu S, Otchere ID, Yeboah-Manu D. The Relevance of Genomic Epidemiology for Control of Tuberculosis in West Africa. Front Public Health 2021; 9:706651. [PMID: 34368069 PMCID: PMC8342769 DOI: 10.3389/fpubh.2021.706651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis complex (MTBC), remains a global health problem. West Africa has a unique epidemiology of TB that is characterized by medium- to high-prevalence. Moreover, the geographical restriction of M. africanum to the sub-region makes West Africa have an extra burden to deal with a two-in-one pathogen. The region is also burdened with low case detection, late reporting, poor treatment adherence leading to development of drug resistance and relapse. Sporadic studies conducted within the subregion report higher burden of drug resistant TB (DRTB) than previously thought. The need for more sensitive and robust tools for routine surveillance as well as to understand the mechanisms of DRTB and transmission dynamics for the design of effective control tools, cannot be overemphasized. The advancement in molecular biology tools including traditional fingerprinting and next generation sequencing (NGS) technologies offer reliable tools for genomic epidemiology. Genomic epidemiology provides in-depth insight of the nature of pathogens, circulating strains and their spread as well as prompt detection of the emergence of new strains. It also offers the opportunity to monitor treatment and evaluate interventions. Furthermore, genomic epidemiology can be used to understand potential emergence and spread of drug resistant strains and resistance mechanisms allowing the design of simple but rapid tools. In this review, we will describe the local epidemiology of MTBC, highlight past and current investigations toward understanding their biology and spread as well as discuss the relevance of genomic epidemiology studies to TB control in West Africa.
Collapse
Affiliation(s)
- Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Couvin D, Reynaud Y, Rastogi N. Two tales: Worldwide distribution of Central Asian (CAS) versus ancestral East-African Indian (EAI) lineages of Mycobacterium tuberculosis underlines a remarkable cleavage for phylogeographical, epidemiological and demographical characteristics. PLoS One 2019; 14:e0219706. [PMID: 31299060 PMCID: PMC6625721 DOI: 10.1371/journal.pone.0219706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
The East African Indian (EAI) and Central Asian (CAS) lineages of Mycobacterium tuberculosis complex (MTBC) mainly infect tuberculosis (TB) patients in the eastern hemisphere which contains many of the 22 high TB burden countries including China and India. We investigated if phylogeographical, epidemiological and demographical characteristics for these 2 lineages differed in SITVIT2 database. Genotyping results and associated data (age, sex, HIV serology, drug resistance) on EAI and CAS lineages (n = 10,974 strains) were extracted. Phylogenetic and Bayesian, and other statistical analyses were used to compare isolates. The male/female sex ratio was 907/433 (2.09) for the EAI group vs. 881/544 (1.62) for CAS (p-value<0.002). The proportion of younger patients aged 0-20 yrs. with CAS lineage was significantly higher than for EAI lineage (18.07% vs. 10.85%, p-value<0.0001). The proportion of multidrug resistant and extensively drug resistant TB among CAS group (30.63% and 1.03%, respectively) was significantly higher than in the EAI group (12.14% and 0.29%, respectively; p-value<0.0001). Lastly, the proportion of HIV+ patients was 20.34% among the EAI group vs. 3.46% in the CAS group (p-value<0.0001). This remarkable split observed between various parameters for these 2 lineages was further corroborated by their geographic distribution profile (EAI being predominantly found in Eastern-Coast of Africa, South-India and Southeast Asia, while CAS was predominantly found in Afghanistan, Pakistan, North India, Nepal, Middle-east, Libya, Sudan, Ethiopia, Kenya and Tanzania). Some geo-specificities were highlighted. This study demonstrated a remarkable cleavage for aforementioned characteristics of EAI and CAS lineages, showing a North-South divide along the tropic of cancer in Eastern hemisphere-mainly in Asia, and partly prolonged along the horn of Africa. Such studies would be helpful to better comprehend prevailing TB epidemic in context of its historical spread and evolutionary features, and provide clues to better treatment and patient-care in countries and regions concerned by these lineages.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| |
Collapse
|
4
|
Genotypic diversity of Mycobacterium tuberculosis in Buenos Aires, Argentina. INFECTION GENETICS AND EVOLUTION 2018; 62:1-7. [PMID: 29630937 DOI: 10.1016/j.meegid.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022]
Abstract
Buenos Aires is an overpopulated port city historically inhabited by people of European descent. Together with its broader metropolitan area, the city exhibits medium tuberculosis rates, and receives migrants, mainly from tuberculosis highly endemic areas of Argentina and neighboring countries. This work was aimed to gain insight into the Mycobacterium tuberculosis population structure in two suburban districts of Buenos Aires which are illustrative of the overall situation of tuberculosis in Argentina. The Lineage 4 Euro-American accounted for >99% of the 816 isolates analyzed (one per patient). Frequencies of spoligotype families were T 35.9%, LAM 33.2%, Haarlem 19.5%, S 3.2%, X 1.5%, Ural 0.7%, BOV 0.2%, Beijing 0.2%, and Cameroon 0.2%. Unknown signatures accounted for 5.3% isolates. Of 55 spoligotypes not matching any extant shared international type (SIT) in SITVIT database, 22 fitted into 15 newly-issued SITs. Certain autochthonous South American genotypes were found to be actively evolving. LAM3, which is wild type for RDrio, was the predominant LAM subfamily in both districts and the RDrio signature was rare among autochthonous, newly created, SITs and orphan patterns. Two genotypes that are rarely observed in neighboring countries ̶ SIT2/H2 and SIT159/T1 Tuscany ̶ were conspicuously represented in Argentina. The infrequent Beijing patterns belonged to Peruvian patients. We conclude that the genotype diversity observed reflects the influence of the Hispanic colonization and more recent immigration waves from Mediterranean and neighboring countries. Unlike in Brazil, the RDrio type does not play a major role in the tuberculosis epidemic in Buenos Aires.
Collapse
|
5
|
Rasoahanitralisoa R, Rakotosamimanana N, Stucki D, Sola C, Gagneux S, Rasolofo Razanamparany V. Evaluation of spoligotyping, SNPs and customised MIRU-VNTR combination for genotyping Mycobacterium tuberculosis clinical isolates in Madagascar. PLoS One 2017; 12:e0186088. [PMID: 29053711 PMCID: PMC5650158 DOI: 10.1371/journal.pone.0186088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Combining different molecular typing methods for Mycobacterium tuberculosis complex (MTBC) can be a powerful tool for molecular epidemiology-based investigation of TB. However, the current standard method that provides high discriminatory power for such a combination, mycobacterial interspersed repetitive units-variable numbers of tandem repeats typing (MIRU-VNTR), is laborious, time-consuming and often too costly for many resource-limited laboratories. We aimed to evaluate a reduced set of loci for MIRU-VNTR typing in combination with spoligotyping and SNP-typing for routine molecular epidemiology of TB. METHOD Spoligotyping and SNP-typing, in combination with the 15 loci MIRU-VNTR typing, were first used to type clinical MTBC isolates (n = 158) from Madagascar. A step by step reduction of MIRU-VNTR loci number was then performed according to the Hunter and Gaston Discriminatory Index (HGDI) and to the Principal component analysis (PCA) correlation with the spoligotype profiles to evaluate the discrimination power inside the generated spoligotype clusters. The 15 MIRU-VNTR was used as reference and SNP-typing was used to determine the main MTBC lineages. RESULTS Of the 158 clinical isolates studied, the SNP-typing classified 23 into Lineage 1 (14.6%), 31 into Lineage 2 (19.6%), 23 into Lineage 3 (14.6%) and 81 into Lineage 4 strains (51.3%). 37 different spoligotypes profiles were obtained, 15 of which were unique and 20 in clusters. 15-loci MIRU-VNTR typing revealed 144 different genotypes: 132 isolates had a unique MIRU-VNTR profile and 27 isolates were grouped into 12 clusters. After a stepwise reduction of the MIRU-VNTR loci number within each main spoligotype families, three different sets composed of 5 customised MIRU-VNTR loci had a similar discrimination level to the reference 15 loci MIRU-VNTR in lineage 1, lineage 2 and lineage 3. For lineage 4, a set of 4 and 3 MIRU-VNTR loci were proposed to subtype the Harleem and LAM spoligotype families, respectively. For the T spoligotype family, a set of 5 MIRU-VNTR loci was proposed. CONCLUSION According to the lineages and the spoligotype families, the number of MIRU-VNTR loci can be reduced to get an optimal classification of MTBC. These customized sets of MIRU-VNTR loci reduce workload and save resources while maintaining optimal discriminatory power.
Collapse
Affiliation(s)
- Rondroarivelo Rasoahanitralisoa
- Mycobacteria Unit, Institut Pasteur of Madagascar, Antananarivo, Madagascar, Ecole Doctorale Science de la Vie et de l'Environnement, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | | | - David Stucki
- Department of Medical Parasitology and infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Sebastien Gagneux
- Department of Medical Parasitology and infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Institut for Integrative Cell Biology, I2BC, UMR9198 CEA-CNRS-UP Saclay, Orsay, France
| | | |
Collapse
|
6
|
Pan XL, Zhang CL, Nakajima C, Fu J, Shao CX, Zhao LN, Cui JY, Jiao N, Fan CL, Suzuki Y, Hattori T, Li D, Ling H. A quantitative and efficient approach to select MIRU-VNTR loci based on accumulation of the percentage differences of strains for discriminating divergent Mycobacterium tuberculosis sublineages. Emerg Microbes Infect 2017; 6:e68. [PMID: 28745309 PMCID: PMC5567172 DOI: 10.1038/emi.2017.58] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Although several optimal mycobacterial interspersed repetitive units-variable number tandem repeat (MIRU-VNTR) loci have been suggested for genotyping homogenous Mycobacterium tuberculosis, including the Beijing genotype, a more efficient and convenient selection strategy for identifying optimal VNTR loci is needed. Here 281 M. tuberculosis isolates were analyzed. Beijing genotype and non-Beijing genotypes were identified, as well as Beijing sublineages, according to single nucleotide polymorphisms. A total of 22 MIRU-VNTR loci were used for genotyping. To efficiently select optimal MIRU-VNTR loci, we established accumulations of percentage differences (APDs) between the strains among the different genotypes. In addition, we constructed a minimum spanning tree for clustering analysis of the VNTR profiles. Our findings showed that eight MIRU-VNTR loci displayed disparities in h values of ≥0.2 between the Beijing genotype and non-Beijing genotype isolates. To efficiently discriminate Beijing and non-Beijing genotypes, an optimal VNTR set was established by adding loci with APDs ranging from 87.2% to 58.8%, resulting in the construction of a nine-locus set. We also found that QUB11a is a powerful locus for separating ST10s (including ST10, STF and STCH1) and ST22s (including ST22 and ST8) strains, whereas a combination of QUB11a, QUB4156, QUB18, Mtub21 and QUB26 could efficiently discriminate Beijing sublineages. Our findings suggested that two nine-locus sets were not only efficient for distinguishing the Beijing genotype from non-Beijing genotype strains, but were also suitable for sublineage genotyping with different discriminatory powers. These results indicate that APD represents a quantitative and efficient approach for selecting MIRU-VNTR loci to discriminate between divergent M. tuberculosis sublineages.
Collapse
Affiliation(s)
- Xin-Ling Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Chun-Lei Zhang
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 0010020, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo 0600808, Japan
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150026, China
| | - Chang-Xia Shao
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Li-Na Zhao
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Jia-Yi Cui
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Na Jiao
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Chang-Long Fan
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 0010020, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo 0600808, Japan
| | - Toshio Hattori
- Graduate School of Health Science Studies, Kibi International University, Takahashi 7168508, Japan
| | - Di Li
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Hong Ling
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| |
Collapse
|
7
|
Hajimiri ES, Masoomi M, Ebrahimzadeh N, Fateh A, Hadizadeh Tasbiti A, Rahimi Jamnani F, Bahrmand AR, Mirsaeidi M, Vaziri F, Siadat SD. High prevalence of Mycobacterium tuberculosis mixed infection in the capital of moderate tuberculosis incidence country. Microb Pathog 2016; 93:213-8. [PMID: 26944666 DOI: 10.1016/j.micpath.2016.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Recent studies using molecular epidemiological techniques have demonstrated mixed infection with multiple strains of Mycobacterium tuberculosis especially in countries with high tuberculosis (TB) burden. We aimed to determine the prevalence of mixed infection among patients with TB in the capital of Iran as a country with moderate incidence rate. METHODS Samples were collected randomly from January 2011 to December 2013 in Tehran, capital of Iran. A total of 75 M. tuberculosis isolates were genotyped by 24 loci mycobacterial interspersed repetitive unit-variable number tandem repeat typing (MIRU-VNTR) for screening the mixed infection. RESULTS Twenty patients (20/75) were identified with mixed infection, and the estimated rate of mixed infection was 26.6%. Thirteen out of the 24 loci were able to detect the mixed infection in our study. CONCLUSIONS Mixed infections occur at high prevalence among studied Iranian TB patients. Further research is inevitable to evaluate the association of mixed infection and disease progression and treatment.
Collapse
Affiliation(s)
- Elahe Sadat Hajimiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Morteza Masoomi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nayereh Ebrahimzadeh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rahimi Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Reza Bahrmand
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Reynaud Y, Millet J, Rastogi N. Genetic Structuration, Demography and Evolutionary History of Mycobacterium tuberculosis LAM9 Sublineage in the Americas as Two Distinct Subpopulations Revealed by Bayesian Analyses. PLoS One 2015; 10:e0140911. [PMID: 26517715 PMCID: PMC4627653 DOI: 10.1371/journal.pone.0140911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) remains broadly present in the Americas despite intense global efforts for its control and elimination. Starting from a large dataset comprising spoligotyping (n = 21183 isolates) and 12-loci MIRU-VNTRs data (n = 4022 isolates) from a total of 31 countries of the Americas (data extracted from the SITVIT2 database), this study aimed to get an overview of lineages circulating in the Americas. A total of 17119 (80.8%) strains belonged to the Euro-American lineage 4, among which the most predominant genotypic family belonged to the Latin American and Mediterranean (LAM) lineage (n = 6386, 30.1% of strains). By combining classical phylogenetic analyses and Bayesian approaches, this study revealed for the first time a clear genetic structuration of LAM9 sublineage into two subpopulations named LAM9C1 and LAM9C2, with distinct genetic characteristics. LAM9C1 was predominant in Chile, Colombia and USA, while LAM9C2 was predominant in Brazil, Dominican Republic, Guadeloupe and French Guiana. Globally, LAM9C2 was characterized by higher allelic richness as compared to LAM9C1 isolates. Moreover, LAM9C2 sublineage appeared to expand close to twenty times more than LAM9C1 and showed older traces of expansion. Interestingly, a significant proportion of LAM9C2 isolates presented typical signature of ancestral LAM-RDRio MIRU-VNTR type (224226153321). Further studies based on Whole Genome Sequencing of LAM strains will provide the needed resolution to decipher the biogeographical structure and evolutionary history of this successful family.
Collapse
Affiliation(s)
- Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (YR); (NR)
| | - Julie Millet
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (YR); (NR)
| |
Collapse
|
9
|
Streit E, Millet J, Rastogi N. Mycobacterium tuberculosis polyclonal infections and microevolution identified by MIRU-VNTRs in an epidemiological study. Int J Mycobacteriol 2015; 4:222-7. [DOI: 10.1016/j.ijmyco.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022] Open
|