1
|
Kariuki SM, Selhorst P, Abrahams MR, Rebe K, Williamson C, Dorfman JR. Neutralization sensitivity of genital tract HIV-1: shift in selective milieu shapes the population available to transmit. AIDS 2021; 35:1365-1373. [PMID: 33831907 DOI: 10.1097/qad.0000000000002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Previous studies indicate that transmitted/founder HIV-1 isolates are sensitive to neutralization by the transmitting donor's antibodies. This is true in at least a subset of sexual transmissions. We investigated whether this selection for neutralization-sensitive variants begins in the genital tract of the donor, prior to transmission. DESIGN Laboratory study. METHODS HIV-1 viruses from semen and blood of two male donors living with HIV-1 were tested for neutralization sensitivity to contemporaneous autologous antibodies. RESULTS In one donor, semen-derived clones (n = 10, geometric mean ID50 = 176) were 1.75-fold [95% confidence interval (CI) 1.11-2.76, P = 0.018] more sensitive than blood-derived clones (n = 12, geometric mean ID50 = 111) to the individual's own contemporaneous neutralizing antibodies. Enhanced overall neutralization sensitivity of the semen-derived clones could not explain the difference because these semen-derived isolates showed a trend of being less sensitive to neutralization by a pool of heterologous clade-matched sera. This relative sensitivity of semen-derived clones was not observed in a second donor who did not exhibit obvious independent HIV-1 replication in the genital tract. A Bayesian analysis suggested that the set of semen sequences that we analysed originated from a blood sequence. CONCLUSION In some instances, selection for neutralization-sensitive variants during HIV-1 transmission begins in the genital tract of the donor and this may be driven by independent HIV-1 replication in this compartment. Thus, a shift in the selective milieu in the male genital tract allows outgrowth of neutralization-sensitive HIV-1 variants, shaping the population of isolates available for transmission to a new host.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, University of Cape Town
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, South Africa
- Department of Biological Sciences, School of Science, University of Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Kevin Rebe
- ANOVA Health Institute, Cape Town
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, University of Cape Town
- Division of Medical Virology, Department of Pathology, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
2
|
Tongo M, Martin DP, Dorfman JR. Elucidation of Early Evolution of HIV-1 Group M in the Congo Basin Using Computational Methods. Genes (Basel) 2021; 12:genes12040517. [PMID: 33918115 PMCID: PMC8065694 DOI: 10.3390/genes12040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The Congo Basin region is believed to be the site of the cross-species transmission event that yielded HIV-1 group M (HIV-1M). It is thus likely that the virus has been present and evolving in the region since that cross-species transmission. As HIV-1M was only discovered in the early 1980s, our directly observed record of the epidemic is largely limited to the past four decades. Nevertheless, by exploiting the genetic relatedness of contemporary HIV-1M sequences, phylogenetic methods provide a powerful framework for investigating simultaneously the evolutionary and epidemiologic history of the virus. Such an approach has been taken to find that the currently classified HIV-1 M subtypes and Circulating Recombinant Forms (CRFs) do not give a complete view of HIV-1 diversity. In addition, the currently identified major HIV-1M subtypes were likely genetically predisposed to becoming a major component of the present epidemic, even before the events that resulted in the global epidemic. Further efforts have identified statistically significant hot- and cold-spots of HIV-1M subtypes sequence inheritance in genomic regions of recombinant forms. In this review we provide ours and others recent findings on the emergence and spread of HIV-1M variants in the region, which have provided insights into the early evolution of this virus.
Collapse
Affiliation(s)
- Marcel Tongo
- Center for Research on Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
- Correspondence:
| | - Darren P. Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Jeffrey R. Dorfman
- Division of Medical Virology, School of Pathology, Faculty of Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| |
Collapse
|
3
|
Kariuki SM, Selhorst P, Anthony C, Matten D, Abrahams MR, Martin DP, Ariën KK, Rebe K, Williamson C, Dorfman JR. Compartmentalization and Clonal Amplification of HIV-1 in the Male Genital Tract Characterized Using Next-Generation Sequencing. J Virol 2020; 94:e00229-20. [PMID: 32269124 PMCID: PMC7307092 DOI: 10.1128/jvi.00229-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Compartmentalization of HIV-1 between the systemic circulation and the male genital tract may have a substantial impact on which viruses are available for sexual transmission to new hosts. We studied compartmentalization and clonal amplification of HIV-1 populations between the blood and the genital tract from 10 antiretroviral-naive men using Illumina MiSeq with a PrimerID approach. We found evidence of some degree of compartmentalization in every study participant, unlike previous studies, which collectively showed that only ∼50% of analyzed individuals exhibited compartmentalization of HIV-1 lineages between the male genital tract (MGT) and blood. Using down-sampling simulations, we determined that this disparity can be explained by differences in sampling depth in that had we sequenced to a lower depth, we would also have found compartmentalization in only ∼50% of the study participants. For most study participants, phylogenetic trees were rooted in blood, suggesting that the male genital tract reservoir is seeded by incoming variants from the blood. Clonal amplification was observed in all study participants and was a characteristic of both blood and semen viral populations. We also show evidence for independent viral replication in the genital tract in the individual with the most severely compartmentalized HIV-1 populations. The degree of clonal amplification was not obviously associated with the extent of compartmentalization. We were also unable to detect any association between history of sexually transmitted infections and level of HIV-1 compartmentalization. Overall, our findings contribute to a better understanding of the dynamics that affect the composition of virus populations that are available for transmission.IMPORTANCE Within an individual living with HIV-1, factors that restrict the movement of HIV-1 between different compartments-such as between the blood and the male genital tract-could strongly influence which viruses reach sites in the body from which they can be transmitted. Using deep sequencing, we found strong evidence of restricted HIV-1 movements between the blood and genital tract in all 10 men that we studied. We additionally found that neither the degree to which particular genetic variants of HIV-1 proliferate (in blood or genital tract) nor an individual's history of sexually transmitted infections detectably influenced the degree to which virus movements were restricted between the blood and genital tract. Last, we show evidence that viral replication gave rise to a large clonal amplification in semen in a donor with highly compartmentalized HIV-1 populations, raising the possibility that differential selection of HIV-1 variants in the genital tract may occur.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Department of Biological Sciences, School of Science, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Colin Anthony
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - David Matten
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Insitute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kevin Rebe
- Anova Health Institute, Cape Town, South Africa
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Insitute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Li T, Lan Y, Li F, Li H, Deng H, Liu Y, Wang X, Han J, Jia L, Li J, Hu F, Li L. Characterization of Four Nearly Full-Length Genomic Sequences of HIV-1 Subtype G Identified in Guangdong Province, China. AIDS Res Hum Retroviruses 2019; 35:668-672. [PMID: 30793935 DOI: 10.1089/aid.2019.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Four cases infected by HIV-1 subtype G strain were identified in Guangdong, China. The nearly full-length genome was amplified and sequenced for phylogenetic analysis. The four sequences clustered together with subtype G references in the tree (bootstrap value ≥98%). To determine whether HIV-1 subtype G has been spreading in China, all subtype G sequences identified in China were downloaded from HIV Database for further phylogenetic analysis. In the phylogenetic tree of pol gene (nucleotides 2283-3245 by using HXB2 as a calibrator), four clusters with bootstrap value >70% comprised nine sequences from China were identified, suggesting that subtype G might have been spreading in local areas in China. The detailed sequence data in this study will provide more information on HIV epidemic in China. The result also highlighted that more surveillance on subtype G prevalence in China is necessary.
Collapse
Affiliation(s)
- Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun Lan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haohui Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
5
|
Rhee SY, Shafer RW. Geographically-stratified HIV-1 group M pol subtype and circulating recombinant form sequences. Sci Data 2018; 5:180148. [PMID: 30063225 PMCID: PMC6067049 DOI: 10.1038/sdata.2018.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Accurate classification of HIV-1 group M lineages, henceforth referred to as subtyping, is essential for understanding global HIV-1 molecular epidemiology. Because most HIV-1 sequencing is done for genotypic resistance testing pol gene, we sought to develop a set of geographically-stratified pol sequences that represent HIV-1 group M sequence diversity. Representative pol sequences differ from representative complete genome sequences because not all CRFs have pol recombination points and because complete genome sequences may not faithfully reflect HIV-1 pol diversity. We developed a software pipeline that compiled 6,034 one-per-person complete HIV-1 pol sequences annotated by country and year belonging to 11 pure subtypes and 70 CRFs and selected a set of sequences whose average distance to the remaining sequences is minimized for each subtype/CRF and country to generate a Geographically-Stratified set of 716 Pol Subtype/CRF (GSPS) reference sequences. We provide extensive data on pol diversity within each subtype/CRF and country combination. The GSPS reference set will also be useful for HIV-1 pol subtyping.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94301, USA
| |
Collapse
|
6
|
Tongo M, de Oliveira T, Martin DP. Patterns of genomic site inheritance in HIV-1M inter-subtype recombinants delineate the most likely genomic sites of subtype-specific adaptation. Virus Evol 2018; 4:vey015. [PMID: 29942655 PMCID: PMC6007327 DOI: 10.1093/ve/vey015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recombination between different HIV-1 group M (HIV-1M) subtypes is a major contributor to the ongoing genetic diversification of HIV-1M. However, it remains unclear whether the different genome regions of recombinants are randomly inherited from the different subtypes. To elucidate this, we analysed the distribution within 82 circulating and 201 unique recombinant forms (CRFs/URFs), of genome fragments derived from HIV-1M Subtypes A, B, C, D, F, and G and CRF01_AE. We found that viruses belonging to the analysed HIV-1M subtypes and CRF01_AE contributed certain genome fragments more frequently during recombination than other fragments. Furthermore, we identified statistically significant hot-spots of Subtype A sequence inheritance in genomic regions encoding portions of Gag and Nef, Subtype B in Pol, Tat and Env, Subtype C in Vif, Subtype D in Pol and Env, Subtype F in Gag, Subtype G in Vpu-Env and Nef, and CRF01_AE inheritance in Vpu and Env. The apparent non-randomness in the frequencies with which different subtypes have contributed specific genome regions to known HIV-1M recombinants is consistent with selection strongly impacting the survival of inter-subtype recombinants. We propose that hotspots of genomic region inheritance are likely to demarcate the locations of subtype-specific adaptive genetic variations.
Collapse
Affiliation(s)
- Marcel Tongo
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal (UKZN), 719 Umbilo Road, Durban 4001, South Africa
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal (UKZN), 719 Umbilo Road, Durban 4001, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|