1
|
Wan Z, Gong J, Sang J, Jiang W, Zhao Z, Lian M, Tang T, Li Y, Kan Q, Xie Q, Li T, Shao H, Gao W, Qin A, Ye J. Mouse adaptation of H6 avian influenza viruses and their molecular characteristics. Front Microbiol 2022; 13:1049979. [PMID: 36466692 PMCID: PMC9713515 DOI: 10.3389/fmicb.2022.1049979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023] Open
Abstract
H6 avian influenza viruses (AIVs) not only continue to circulate in both domestic poultry and wild waterfowl, but also have occasionally caused spillovers infections in pigs and humans, posing a potential threat to public health. However, the molecular mechanism of H6 AIV adaptation to mammals remains largely unknown. In this study, two mouse-adapted (MA) H6 AIV strains, named as MA E-Teal/417 and MA GWF-Goose/740, were generated through blind passages in BALB/c mice. The two MA H6 strains replicated more efficiently and showed higher virulence than the corresponding wild type (WT) H6 strains in mice. Genome sequencing revealed that MA E-Teal/417 and MA GWF-Goose/740 carried six amino acid mutations (PB2-T224A/E627K, HA-G124R, NA-F167L/Y356H and M1-M92R), and four amino acid mutations (PB1-K577E, PA-T97I/D514E and HA-T276K), respectively, when compared to the corresponding WT virus. Receptor binding assay showed MA E-Teal/417 had stronger binding activity to α-2,3 SA than WT E-Teal/417. Moreover, the polymerase activity analysis found the RNP polymerase activity of both MA H6 viruses was significantly higher than that of the corresponding WT virus in 293T cells. All these demonstrate that H6 AIV can acquire limit amino acid substitutions to adapt to mammals and increase virulence, highlighting the significance of monitoring such mutations of H6 AIV in the field for alarming the potential of its cross-transmission and pathogenesis in mammals.
Collapse
Affiliation(s)
- Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianxi Gong
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Sang
- Sinopharm Yangzhou VAC Biological Engineering Co. Ltd, Yangzhou, Jiangsu, China
| | - Wenjie Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhehong Zhao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mingjun Lian
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Tang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yafeng Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiuqi Kan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Gao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Cui J, Cui P, Shi J, Fan W, Xing X, Gu W, Zhang Y, Zhang Y, Zeng X, Jiang Y, Chen P, Yang H, Chen Y, Liu J, Liu L, Tian G, Lu Y, Chen H, Li C, Deng G. Continued evolution of H6 avian influenza viruses isolated from farms in China between 2014 and 2018. Transbound Emerg Dis 2022; 69:2156-2172. [PMID: 34192815 DOI: 10.1111/tbed.14212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
H6 avian influenza virus (AIV) is one of the most prevalent AIV subtypes in the world. Our previous studies have demonstrated that H6 AIVs isolated from live poultry markets pose a potential threat to human health. In recent years, increasing number of H6 AIVs has been constantly isolated from poultry farms. In order to understand the biological characteristics of H6 AIVs in the context of farms, here, we analyzed the phylogenetic relationships, antigenicity, replication in mice and receptor binding properties of H6 AIVs isolated from farms in China between 2014 and 2018. Phylogenetic analysis showed that 19 different genotypes were formed among 20 representative H6 viruses. Notably, the internal genes of these H6 viruses exhibited complicated relationships with different subtypes of AIVs worldwide, indicating that these viruses are the products of complex and frequent reassortment events. Antigenic analysis revealed that 13 viruses tested were divided into three antigenic groups. 10 viruses examined could all replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that some of the H6 AIVs bound to both α-2, 3-linked glycans (avian-type receptor) and α-2, 6-linked glycans (human-type receptor), thereby posing a potential threat to human health. Together, these findings revealed the prevalence, complicated genetic evolution, diverse antigenicity, and dual receptor binding specificity of H6 AIVs in the settings of poultry farms, which emphasize the importance to continuously monitor the evolution and biological properties of H6 AIVs in nature.
Collapse
Affiliation(s)
- Jiaqi Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Weifeng Fan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yixin Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| |
Collapse
|
3
|
Xiao Y, Yang F, Liu F, Yao H, Wu N, Wu H. Antigen-capture ELISA and immunochromatographic test strip to detect the H9N2 subtype avian influenza virus rapidly based on monoclonal antibodies. Virol J 2021; 18:198. [PMID: 34600550 PMCID: PMC8487345 DOI: 10.1186/s12985-021-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The H9N2 subtype of avian influenza virus (AIV) has become the most widespread subtype of AIV among birds in Asia, which threatens the poultry industry and human health. Therefore, it is important to establish methods for the rapid diagnosis and continuous surveillance of H9N2 subtype AIV. METHODS In this study, an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) and a colloidal gold immunochromatographic test (ICT) strip using monoclonal antibodies (MAbs) 3G4 and 2G7 were established to detect H9N2 subtype AIV. RESULTS The AC-ELISA method and ICT strip can detect H9N2 subtype AIV quickly, and do not cross-react with other subtype AIVs or other viruses. The detection limit of AC-ELISA was a hemagglutinin (HA) titer of 4 for H9N2 subtype AIV per 100 μl sample, and the limit of detection of the HA protein of AIV H9N2 was 31.5 ng/ml. The ICT strip detection limit was an HA titer of 4 for H9N2 subtype AIV per 100 μl sample. Moreover, both detection methods exhibited good reproducibility and repeatability, with coefficients of variation < 5%. For detection in 200 actual poultry samples, the sensitivities and specificities of AC-ELISA were determined as 93.2% and 98.1%, respectively. The sensitivities and specificities of the ICT strips were determined as 90.9% and 97.4%, respectively. CONCLUSIONS The developed AC-ELISA and ICT strips displayed high specificity, sensitivity, and stability, making them suitable for rapid diagnosis and field investigation of H9N2 subtype AIV.
Collapse
Affiliation(s)
- Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
4
|
Xiao Y, Yang F, Liu F, Yao H, Wu N, Wu H. Development and application of a real-time RT-PCR assay to rapidly detect H2 subtype avian influenza A viruses. J Vet Diagn Invest 2021; 33:577-581. [PMID: 33618630 DOI: 10.1177/1040638721994810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The H2 subtypes of avian influenza A viruses (avian IAVs) have been circulating in poultry, and they have the potential to infect humans. Therefore, establishing a method to quickly detect this subtype is pivotal. We developed a TaqMan minor groove binder real-time RT-PCR assay that involved probes and primers based on conserved sequences of the matrix and hemagglutinin genes. The detection limit of this assay was as low as one 50% egg infectious dose (EID50)/mL per reaction. This assay is specific, sensitive, and rapid for detecting avian IAV H2 subtypes.
Collapse
Affiliation(s)
- Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Lin W, Cui H, Teng Q, Li L, Shi Y, Li X, Yang J, Liu Q, Deng J, Li Z. Evolution and pathogenicity of H6 avian influenza viruses isolated from Southern China during 2011 to 2017 in mice and chickens. Sci Rep 2020; 10:20583. [PMID: 33239647 PMCID: PMC7689535 DOI: 10.1038/s41598-020-76541-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/08/2020] [Indexed: 12/02/2022] Open
Abstract
H6 subtype avian influenza viruses spread widely in birds and pose potential threats to poultry and mammals, even to human beings. In this study, the evolution and pathogenicity of H6 AIVs isolated in live poultry markets from 2011 to 2017 were investigated. These H6 isolates were reassortant with other subtypes of influenza virus with increasing genomic diversity. However, no predominant genotype was found during this period. All of the H6N2 and most of the H6N6 isolates replicated efficiently in lungs of inoculated mice without prior adaptation. All of the H6N2 and two H6N6 isolates replicated efficiently in nasal turbinates of inoculated mice, which suggested the H6N2 viruses were more adaptive to the upper respiratory tract of mice than the H6N6 viruses. One of H6N2 virus caused systemic infection in one out of three inoculated mice, which indicated that H6 avian influenza virus, especially the H6N2 viruses posed a potential threat to mammals. Five H6 strains selected from different genotypes caused no clinical signs to inoculated chickens, and their replication were limited in chickens since the viruses have been detected only from a few tissues or swabs at low titers. Our study strongly suggests that the H6 avian influenza virus isolated from live poultry markets pose potential threat to mammals.
Collapse
Affiliation(s)
- Weishan Lin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Hongrui Cui
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Luzhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ying Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Yang F, Xiao Y, Xu L, Liu F, Yao H, Wu N, Wu H. Development of an antigen-capture enzyme-linked immunosorbent assay and immunochromatographic strip based on monoclonal antibodies for detection of H6 avian influenza viruses. Arch Virol 2020; 165:1129-1139. [PMID: 32221715 DOI: 10.1007/s00705-020-04602-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Continuous surveillance has shown that H6 subtype avian influenza viruses (AIVs) are prevalent in poultry and occasionally break the species barrier to infect humans. It is therefore necessary to establish a specific, rapid and sensitive method to screen H6 AIVs. In this study, a panel of monoclonal antibodies (mAbs) against the hemagglutinin (HA) of an H6 AIV isolate was produced. The purified mAbs have high affinity and specificity for H6 AIVs. An antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) and immunochromatographic strip were developed based on two mAbs (1D7 and 1F12). The AC-ELISA results showed high sensitivity with a limit of detection (LOD) of 3.9 ng/ml for H6 HA protein and 0.5 HAU (HA units)/100 µl for live H6 subtype AIVs. The average recovery of the AC-ELISA with allantoic fluid, respiratory specimens, and cloacal swabs was 91.907 ± 1.559%, 82.977 ± 1.497% and 73.791 ± 2.588%, respectively. The intra- and inter-assay coefficient of variation was less than 10%. The LOD of immunochromatographic strip was 1 HAU when evaluated by the naked eye, and the detection time was less than 10 min without any equipment. Storage at room temperature or 4 °C for 30 days or 60 days had no effect on sensitivity and specificity of the strip. Thus, the AC-ELISA and immunochromatographic strips described here could be a secondary method to diagnose H6 AIV infections with high specificity, sensitivity, and stability.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lihua Xu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
7
|
Wu H, Yang F, Xiao Y, Liu F, Yao H, Wu N. Adaptive amino acid substitutions enhance the virulence of an avian-origin H6N1 influenza virus in mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 74:103918. [PMID: 31200112 DOI: 10.1016/j.meegid.2019.103918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 12/01/2022]
Abstract
The H6N1 subtype avian influenza virus (AIV) is a zoonotic infectious disease pathogen, which poses a threat to human health. In order to study the possible substitution of H6N1 AIV for mammals, an avian-origin H6N1 virus was successively passaged in mice. The results showed that PB2 (L193H and E627K), PA (S709F) and HA (V127I) proteins had multiple amino acid substitutions. The virulence of the mouse-adapted virus was stronger than that of the wild virus, and it was highly pathogenic to mice. Therefore, continued surveillance of these substitutions in poultry H6N1 viruses is required.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China.
| |
Collapse
|
8
|
Wu H, Yang F, Liu F, Lu R, Peng X, Chen B, Yao H, Wu N. Isolation and characterization of novel reassortant H6N1 avian influenza viruses from chickens in Eastern China. Virol J 2018; 15:164. [PMID: 30355336 PMCID: PMC6201551 DOI: 10.1186/s12985-018-1063-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022] Open
Abstract
Background The H6N1 subtype of avian influenza viruses (AIVs) can infect people with an influenza-like illness; the H6N1 viruses possess the ability for zoonotic transmission from avians into mammals, and possibly pose a threat to human health. Methods In 2017, live poultry markets (LPMs) in Zhejiang Province were surveyed for AIVs. To better understand the genetic relationships between these strains from Eastern China and other AIVs, all gene segments of these strains were sequenced and compared with sequences available in GenBank. In this study, we analyzed the receptor-binding specificity, antigenic characteristics, and pathogenicity of these two H6N1 viruses. Results In 2017, two H6N1 AIVs were isolated from chickens during surveillance for AIVs in LPMs in Eastern China. Phylogenetic analysis showed that these strains shared genetic characteristics from H6, H10, H1, and H4 AIVs found in ducks and wild birds in East Asia. These AIV strains were able to replicate in mice without prior adaptation. Conclusions In this study, we report the discovery of new strains of H6N1 viruses from chickens with novel gene reassortments. Our results suggest that these chickens play an important role generating novel reassortments in AIVs, and emphasize the need for continued surveillance of AIV strains circulating in poultry. Electronic supplementary material The online version of this article (10.1186/s12985-018-1063-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Rufeng Lu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China.
| |
Collapse
|
9
|
Wu H, Yang F, Liu F, Peng X, Chen B, Cheng L, Lu X, Yao H, Wu N. Molecular characterization of H10 subtype avian influenza viruses isolated from poultry in Eastern China. Arch Virol 2018; 164:159-179. [PMID: 30302582 DOI: 10.1007/s00705-018-4019-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
In recent years, avian-origin H10 influenza viruses have proved capable of infecting human beings, and they pose a potential public health threat. Seven H10 avian influenza viruses (AIVs), H10N3 (n = 2), H10N7 (n = 1), and H10N8 (n = 4), were isolated from chickens in Zhejiang Province, Eastern China, during surveillance of AIVs in live poultry markets in 2016 and 2017. Phylogenetic analysis indicated that Zhejiang H10 strains received gene segments from H10, H3, and H7 viruses from birds in East Asia. Animal inoculation tests showed that these isolates have low pathogenicity in mice and can replicate in this species. Our findings suggest these H10 AIVs have the ability to adapt to chicken or other poultry, and highlight the need of long-term surveillance.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Yang F, Wu H, Liu F, Lu X, Peng X, Wu N. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses. Arch Virol 2018; 163:1671-1675. [PMID: 29468361 DOI: 10.1007/s00705-018-3773-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023]
Abstract
The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
11
|
Ge Y, Chai H, Fan Z, Wang X, Yao Q, Ma J, Chen S, Hua Y, Deng G, Chen H. New H6 influenza virus reassortment strains isolated from Anser fabalis in Anhui Province, China. Virol J 2017; 14:36. [PMID: 28222765 PMCID: PMC5320792 DOI: 10.1186/s12985-017-0680-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022] Open
Abstract
Background H6 subtype avian influenza viruses are globally distributed and, in recent years, have been isolated with increasing frequency from both domestic and wild bird species as well as infected humans. Many reports have examined the viruses in the context of poultry or several wild bird species, but there is less information regarding their presence in migratory birds. Methods Hemagglutination and hemagglutination inhibition tests were used to measure HA activity for different HA subtypes. Whole viral genomes were sequenced and analysed using DNAstar and MEGA 6 to understand their genetic evolution. Pathogenicity was evaluated using a mouse infection model. Results We isolated 13 strains of H6 virus from faecal samples of migratory waterfowl in Anhui Province of China in 2014. Phylogenetic analysis showed gene reassortment between Eurasian and North American lineages. Five of the identified H6 strains had the ability to infect mice without adaptation. Conclusion Our findings suggest that regular surveillance of wild birds, especially migratory birds, is important for providing early warning and control of avian influenza outbreaks.
Collapse
Affiliation(s)
- Ye Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.,College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Zhiqiang Fan
- School of Life Sciences, Anqing Normal University, Anqing, Anhui Province, China
| | - Xianfu Wang
- Natural Protection & Management Station of Forestry Department Centre of Anhui Province, Hefei, Anhui Province, China
| | - Qiucheng Yao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Si Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuping Hua
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
12
|
Rauff D, Strydom C, Abolnik C. Evolutionary consequences of a decade of vaccination against subtype H6N2 influenza. Virology 2016; 498:226-239. [DOI: 10.1016/j.virol.2016.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 01/12/2023]
|
13
|
Isolation and genetic characterization of novel reassortant H6N6 subtype avian influenza viruses isolated from chickens in eastern China. Arch Virol 2016; 161:1859-72. [PMID: 27101069 DOI: 10.1007/s00705-016-2861-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
H6 subtype avian influenza viruses (AIVs) possess the ability to cross the species barrier to infect mammals and pose a threat to human health. From June 2014 to July 2015, 12 H6N6 AIVs were isolated from chickens in live-poultry markets in Zhejiang Province, Eastern China. Phylogenetic analysis showed that these isolates received their genes from H6 and H9N2 subtype AIVs of poultry in China. These novel reassortant viruses showed moderate pathogenicity in mice and were able to replicate in mice without prior adaptation. Considering that novel reassorted H6N6 viruses were isolated from chickens in this study, it is possible that these chickens play an important role in the generation of novel reassorted H6N6 AIVs, and these results emphasize the need for continued surveillance of the H6N6 AIVs circulating in poultry.
Collapse
|