1
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
2
|
Zareh-Khoshchehreh R, Bamdad T, Arab SS, Behdani M, Biglar M. In Silico Analysis of Neutralizing Antibody Epitopes on The Hepatitis C Virus Surface Glycoproteins. CELL JOURNAL 2023; 25:62-72. [PMID: 36680485 PMCID: PMC9868435 DOI: 10.22074/cellj.2022.253363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Despite of antiviral drugs and successful treatment, an effective vaccine against hepatitis C virus (HCV) infection is still required. Recently, bioinformatic methods same as prediction algorithms, have greatly contributed to the use of peptides in the design of immunogenic vaccines. Therefore, finding more conserved sites on the surface glycoproteins (E1 and E2) of HCV, as major targets to design an effective vaccine against genetically different viruses in each genotype was the goal of the study. MATERIALS AND METHODS In this experimental study, 100 entire sequences of E1 and E2 were retrieved from the NCBI website and analyzed in terms of mutations and critical sites by Bioedit 7.7.9, MEGA X software. Furthermore, HCV-1a samples were obtained from some infected people in Iran, and reverse transcriptase-polymerase chain reaction (RTPCR) assay was optimized to amplify their E1 and E2 genes. Moreover, all three-dimensional structures of E1 and E2 downloaded from the PDB database were analyzed by YASARA. In the next step, three interest areas of humoral immunity in the E2 glycoprotein were evaluated. OSPREY3.0 protein design software was performed to increase the affinity to neutralizing antibodies in these areas. RESULTS We found the effective in silico binding affinity of residues in three broadly neutralizing epitopes of E2 glycoprotein. First, positions that have substitution capacity were detected in these epitopes. Furthermore, residues that have high stability for substitution in these situations were indicated. Then, the mutants with the strongest affinity to neutralize antibodies were predicted. I414M, T416S, I422V, I414M-T416S, and Q412N-I414M-T416S substitutions theoretically were exhibited as mutants with the best affinity binding. CONCLUSION Using an innovative filtration strategy, the residues of E2 epitopes which have the best in silico binding affinity to neutralizing antibodies were exhibited and a distinct peptide library platform was designed.
Collapse
Affiliation(s)
| | - Taravat Bamdad
- Department of Virology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran,P.O.Box: 14155-4838Department of VirologySchool of Medical SciencesTarbiat Modares UniversityTehranIranP.O.Box: 14155-6559Department of PharmacyDrug Design and Development Research CenterTehran University of Medical
SciencesTehranIran
Emails:,
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University-TMU, Tehran, Iran
| | - Mahdi Behdani
- Department of Biotechnology, Biotechnology Research Center, Venom and Biotherapeutics Molecules Lab, Pasteur
Institute of Iran, Tehran, Iran
| | - Mahmoud Biglar
- Department of Pharmacy, Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran ,P.O.Box: 14155-4838Department of VirologySchool of Medical SciencesTarbiat Modares UniversityTehranIranP.O.Box: 14155-6559Department of PharmacyDrug Design and Development Research CenterTehran University of Medical
SciencesTehranIran
Emails:,
| |
Collapse
|
3
|
Riaz N, Leung P, Bull RA, Lloyd AR, Rodrigo C. Evolution of within-host variants of the hepatitis C virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105242. [PMID: 35150893 DOI: 10.1016/j.meegid.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Comprehensive investigation of the within-host evolution of hepatitis C virus (HCV) variants has been difficult without high coverage deep sequencing data and bioinformatics tools to characterise these variants. With the advent of high throughput, long-read sequencing platforms such as Oxford Nanopore Technology (ONT), capturing within-host evolution of HCV using full genome sequences has become feasible. This study aimed to provide the proof of concept that within-host evolutionary analysis of HCV using near-full-length genomes, is achievable. METHODS Five treatment naïve subjects with chronic HCV infection were sampled longitudinally from 6 months to 5 years post-infection, with 3-5 sampling timepoints per subject. Near full-length sequences generated using the ONT platform encompassing within-host HCV variants were analysed using an in-house bioinformatic tool. A 200-sequence proxy alignment of the viral variants was made for each subject and timepoint, proportionately representing the observed within-host variants. This alignment was then used in a Bayesian evolutionary analysis using BEAST software suite (v1.8). RESULTS The estimated within-host substitution rates ranged between 0.89 and 6.19 × 10-5 substitutions/site/day. At most timepoints, observed viral lineages were closely related to those from the immediately preceding timepoint, and genetic diversity bottlenecks were observed at intervals in both the acute and chronic phases of infection. The highest within-host mutation rates were observed in the Envelope-P7 and NS5 regions while the Core region was the most conserved. CONCLUSION This study demonstrates the feasibility of studying within-host evolution of near-full-length HCV genomes, using long-read sequencing platforms. When considered in conjunction with meta-data such as the host immune response, these methods may offer high resolution insights into immune escape (in vivo or in vitro) to inform vaccine design and to predict spontaneous clearance.
Collapse
Affiliation(s)
- Nasir Riaz
- Kirby Institute, UNSW Sydney, 2052, NSW, Australia
| | | | - Rowena A Bull
- Kirby Institute, UNSW Sydney, 2052, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, 2052, NSW, Australia
| | | | - Chaturaka Rodrigo
- Kirby Institute, UNSW Sydney, 2052, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, 2052, NSW, Australia.
| |
Collapse
|
4
|
Fierro NA, Rivera-Toledo E, Ávila-Horta F, Anaya-Covarrubias JY, Mendlovic F. Scavenger Receptors in the Pathogenesis of Viral Infections. Viral Immunol 2022; 35:175-191. [PMID: 35319302 DOI: 10.1089/vim.2021.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Scavenger receptors (SR) are not only pattern recognition receptors involved in the immune response against pathogens but are also important receptors exploited by different virus to enter host cells, and thus represent targets for antiviral therapy. The high mutation rates of viruses, as well as their small genomes are partly responsible for the high rates of virus resistance and effective treatments remain a challenge. Most currently approved formulations target viral-encoded factors. Nevertheless, host proteins may function as additional targets. Thus, there is a need to explore and develop new strategies aiming at cellular factors involved in virus replication and host cell entry. SR-virus interactions have implications in the pathogenesis of several viral diseases and in adenovirus-based vaccination and gene transfer technologies, and may function as markers of severe progression. Inhibition of SR could reduce adenoviral uptake and improve gene therapy and vaccination, as well as reduce pathogenesis. In this review, we will examine the crucial role of SR play in cell entry of different types of human virus, which will allow us to further understand their role in protection and pathogenesis and its potential as antiviral molecules. The recent discovery of SR-B1 as co-factor of SARS-Cov-2 (severe acute respiratory syndrome coronavirus 2) entry is also discussed. Further fundamental research is essential to understand molecular interactions in the dynamic virus-host cell interplay through SR for rational design of therapeutic strategies.
Collapse
Affiliation(s)
- Nora A Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernanda Ávila-Horta
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| |
Collapse
|
5
|
A Recombinant Hepatitis C Virus Genotype 1a E1/E2 Envelope Glycoprotein Vaccine Elicits Antibodies That Differentially Neutralize Closely Related 2a Strains through Interactions of the N-Terminal Hypervariable Region 1 of E2 with Scavenger Receptor B1. J Virol 2019; 93:JVI.00810-19. [PMID: 31462563 PMCID: PMC6819942 DOI: 10.1128/jvi.00810-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine. The global health burden for hepatitis C virus (HCV) remains high, despite available effective treatments. To eliminate HCV, a prophylactic vaccine is needed. One major challenge in the development of a vaccine is the genetic diversity of the virus, with 7 major genotypes and many subtypes. A global vaccine must be effective against all HCV genotypes. Our previous data showed that the 1a E1/E2 glycoprotein vaccine component elicits broad cross-neutralizing antibodies in humans and animals. However, some variation is seen in the effectiveness of these antibodies to neutralize different HCV genotypes and isolates. Of interest was the differences in neutralizing activity against two closely related isolates of HCV genotype 2a, the J6 and JFH-1 strains. Using site-directed mutagenesis to generate chimeric viruses between the J6 and JFH-1 strains, we found that variant amino acids within the core E2 glycoprotein domain of these two HCV genotype 2a viruses do not influence isolate-specific neutralization. Further analysis revealed that the N-terminal hypervariable region 1 (HVR1) of the E2 protein determines the sensitivity of isolate-specific neutralization, and the HVR1 of the resistant J6 strain binds scavenger receptor class-B type-1 (SR-B1), while the sensitive JFH-1 strain does not. Our data provide new information on mechanisms of isolate-specific neutralization to facilitate the optimization of a much-needed HCV vaccine. IMPORTANCE A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine.
Collapse
|
6
|
Walker MR, Leung P, Eltahla AA, Underwood A, Abayasingam A, Brasher NA, Li H, Wu BR, Maher L, Luciani F, Lloyd AR, Bull RA. Clearance of hepatitis C virus is associated with early and potent but narrowly-directed, Envelope-specific antibodies. Sci Rep 2019; 9:13300. [PMID: 31527718 PMCID: PMC6746763 DOI: 10.1038/s41598-019-49454-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is one of very few viruses that are either naturally cleared, or alternatively persist to cause chronic disease. Viral diversity and escape, as well as host adaptive immune factors, are believed to control the outcome. To date, there is limited understanding of the critical, early host-pathogen interactions. The asymptomatic nature of early HCV infection generally prevents identification of the transmitted/founder (T/F) virus, and thus the study of host responses directed against the autologous T/F strain. In this study, 14 rare subjects identified from very early in infection (4–45 days) with varied disease outcomes (n = 7 clearers) were examined in regard to the timing, breadth, and magnitude of the neutralizing antibody (nAb) response, as well as evolution of the T/F strain. Clearance was associated with earlier onset and more potent nAb responses appearing at a mean of 71 days post-infection (DPI), but these responses were narrowly directed against the autologous T/F virus or closely related variants. In contrast, a delayed onset of nAbs (mean 425 DPI) was observed in chronic progressors that appear to have targeted longitudinal variants rather than the T/F strain. The nAb responses in the chronic progressors mapped to known CD81 binding epitopes, and were associated with rapid emergence of new viral variants with reduced CD81 binding. We propose that the prolonged period of viremia in the absence of nAbs in these subjects was associated with an increase in viral diversity, affording the virus greater options to escape nAb pressure once it emerged. These findings indicate that timing of the nAb response is essential for clearance. Further investigation of the specificities of the early nAbs and the factors regulating early induction of protective nAbs is needed.
Collapse
Affiliation(s)
- Melanie R Walker
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Preston Leung
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Auda A Eltahla
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Arunasingam Abayasingam
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Nicholas A Brasher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Hui Li
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Bing-Ru Wu
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Lisa Maher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia. .,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Kinchen VJ, Bailey JR. Defining Breadth of Hepatitis C Virus Neutralization. Front Immunol 2018; 9:1703. [PMID: 30116237 PMCID: PMC6082923 DOI: 10.3389/fimmu.2018.01703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Extraordinary genetic diversity is a hallmark of hepatitis C virus (HCV). Therefore, accurate measurement of the breadth of antibody neutralizing activity across diverse HCV isolates is key to defining correlates of immune protection against the virus, and essential to guide vaccine development. Panels of HCV pseudoparticle (HCVpp) or replication-competent cell culture viruses (HCVcc) can be used to measure neutralizing breadth of antibodies. These in vitro assays have been used to define neutralizing breadth of antibodies in serum, to characterize broadly neutralizing monoclonal antibodies, and to identify mechanisms of HCV resistance to antibody neutralization. Recently, larger and more diverse panels of both HCVpp and HCVcc have been described that better represent the diversity of circulating HCV strains, but further work is needed to expand and standardize these neutralization panels.
Collapse
Affiliation(s)
- Valerie J Kinchen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Can Broadly Neutralizing Monoclonal Antibodies Lead to a Hepatitis C Virus Vaccine? Trends Microbiol 2018; 26:854-864. [PMID: 29703495 DOI: 10.1016/j.tim.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
While licensed vaccines elicit protective antibody responses against a variety of viral infections, an effective vaccine for hepatitis C virus (HCV) has remained elusive. The extraordinary genetic diversity of HCV and the ability of the virus to evade the immune response have hindered vaccine development efforts. However, recent studies have greatly expanded the number of well characterized broadly neutralizing human monoclonal antibodies (bNAbs) against HCV. These bNAbs target relatively conserved HCV epitopes, prevent HCV infection in animal models, and are associated with spontaneous clearance of human HCV infection. In this review, recent high-resolution bNAb epitope mapping and structural analysis of bNAb-epitope complexes that may serve as a guide for vaccine development are discussed along with major obstacles.
Collapse
|
9
|
A Human Biofilm-Disrupting Monoclonal Antibody Potentiates Antibiotic Efficacy in Rodent Models of both Staphylococcus aureus and Acinetobacter baumannii Infections. Antimicrob Agents Chemother 2017; 61:AAC.00904-17. [PMID: 28717038 DOI: 10.1128/aac.00904-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Many serious bacterial infections are antibiotic refractory due to biofilm formation. A key structural component of biofilm is extracellular DNA, which is stabilized by bacterial proteins, including those from the DNABII family. TRL1068 is a high-affinity human monoclonal antibody against a DNABII epitope conserved across both Gram-positive and Gram-negative bacterial species. In the present study, the efficacy of TRL1068 for the disruption of biofilm was demonstrated in vitro in the absence of antibiotics by scanning electron microscopy. The in vivo efficacy of this antibody was investigated in a well-characterized catheter-induced aortic valve infective endocarditis model in rats infected with a methicillin-resistant Staphylococcus aureus (MRSA) strain with the ability to form thick biofilms, obtained from the blood of a patient with persistent clinical infection. Animals were treated with vancomycin alone or in combination with TRL1068. MRSA burdens in cardiac vegetations and within intracardiac catheters, kidneys, spleen, and liver showed significant reductions in the combination arm versus vancomycin alone (P < 0.001). A trend toward mortality reduction was also observed (P = 0.09). In parallel, the in vivo efficacy of TRL1068 against a multidrug-resistant clinical Acinetobacter baumannii isolate was explored by using an established mouse model of skin and soft tissue catheter-related biofilm infection. Catheter segments infected with A. baumannii were implanted subcutaneously into mice; animals were treated with imipenem alone or in combination with TRL1068. The combination showed a significant reduction of catheter-adherent bacteria versus the antibiotic alone (P < 0.001). TRL1068 shows excellent promise as an adjunct to standard-of-care antibiotics for a broad range of difficult-to-treat bacterial infections.
Collapse
|