1
|
Gupta N, Khatoon N, Mishra A, Verma VK, Prajapati VK. Structural vaccinology approach to investigate the virulent and secretory proteins of Bacillus anthracis for devising anthrax next-generation vaccine. J Biomol Struct Dyn 2019; 38:4895-4905. [DOI: 10.1080/07391102.2019.1688197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Nazia Khatoon
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vijay Kumar Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Ojha R, Nandani R, Pandey RK, Mishra A, Prajapati VK. Emerging role of circulating microRNA in the diagnosis of human infectious diseases. J Cell Physiol 2019; 234:1030-1043. [PMID: 30146762 DOI: 10.1002/jcp.27127] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
The endogenic microRNAs (miRNA) are evolutionary, conserved, and belong to a group of small noncoding RNAs with a stretch of 19-24 nucleotides. The miRNAs play an indispensable role in gene modulation at the posttranscriptional level, inclusive of stem-cell differentiation, embryogenesis, hematopoiesis, metabolism, immune responses, or infections. The miRNAs secreted from the cells and their presence in the biological fluids signifies the regulatory role of circulating miRNAs in the pathogenesis. The phenomenal expression levels of circulating miRNAs in serum or plasma during infection makes them the potential therapeutic biomarkers for the diagnosis of assorted human infectious diseases. In this article, we have accentuated the methods for the profiling of circulating miRNA as well as the importance of miRNA as biomarkers for the diagnosis of human infectious diseases. To date, numerous biomarkers have been identified for the diagnostic or prognostic purpose; for instance, miR-182, miR-486, and miR15a in sepsis; miR-320 and miR505 in inflammatory bowel disease; miR-155 and miR-1260 in influenza; miR-12, miRVP-3p, and miR-184 in arboviruses; and miR-29b and miR-125 in hepatitis infection. Nevertheless, the noninvasive diagnostic approach, with the aid of biomarkers, currently plays a decisive role in the untimely diagnosis of human infections. So, in the near future, the exploitation of circulating miRNAs as therapeutic biomarkers for the diagnosis of human infections will help us to cure the associated diseases promptly and effectively.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, India
| | - Raj Nandani
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology-Jodhpur, Jodhpur, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, India
| |
Collapse
|
3
|
Ojha R, Nandani R, Prajapati VK. Contriving multiepitope subunit vaccine by exploiting structural and nonstructural viral proteins to prevent Epstein-Barr virus-associated malignancy. J Cell Physiol 2018; 234:6437-6448. [PMID: 30362500 DOI: 10.1002/jcp.27380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 01/02/2023]
Abstract
Cancer is one of the common lifestyle diseases and is considered to be the leading cause of death worldwide. Epstein-Barr virus (EBV)-infected individuals remain asymptomatic; but under certain stress conditions, EBV may lead to the development of cancers such as Burkitt's and Hodgkin's lymphoma and nasopharyngeal carcinoma. EBV-associated cancers result in a large number of deaths in Asian and African population, and no effective cure has still been developed. We, therefore, tried to devise a subunit vaccine with the help of immunoinformatic approaches that can be used for the prevention of EBV-associated malignancies. The epitopes were predicted through B-cell, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) from the different oncogenic proteins of EBV. A vaccine was designed by combining the B-cell and T-cell (HTL and CTL) epitopes through linkers, and for the enhancement of immunogenicity, an adjuvant was added at the N-terminal. Further, homology modeling was performed to generate the 3D structure of the designed vaccine. Moreover, molecular docking was performed between the designed vaccine and immune receptor (TLR-3) to determine the interaction between the final vaccine construct and the immune receptor complex. In addition, molecular dynamics was performed to analyze the stable interactions between the ligand final vaccine model and receptor TLR-3 molecule. Lastly, to check the expression of our vaccine construct, we performed in silico cloning. This study needed experimental validation to ensure its effectiveness and potency to control malignancy.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Raj Nandani
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
4
|
Pandey RK, Dahiya S, Mahita J, Sowdhamini R, Prajapati VK. Vaccination and immunization strategies to design Aedes aegypti salivary protein based subunit vaccine tackling Flavivirus infection. Int J Biol Macromol 2018; 122:1203-1211. [PMID: 30219509 DOI: 10.1016/j.ijbiomac.2018.09.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
Abstract
Flavivirus causes arthropod-borne severe diseases that sometimes lead to the death. The Flavivirus species including Dengue virus, Zika virus and yellow fever virus are transmitted by the bite of Aedes mosquitoes. All these viral species target the people living in their respective endemic zone causing a high mortality rate. Recent studies show that immune factors present in the Ae. aegypti saliva is the hidden culprit promoting blood meal collection, suppressing host immune molecules and promoting disease establishment. This study was designed to develop a subunit vaccine using Aedes mosquito salivary proteins targeting the aforementioned Flaviviruses. Subunit vaccine was designed very precisely by combining the immunogenic B-cell epitope with CTL and HTL epitopes and also suitable adjuvant and linkers. Immunogenicity, allergenicity and physiochemical characterization were also performed for scientific validation. Molecular docking and molecular dynamics simulations studies were carried out to confirm the stable affinity between the vaccine protein (3D) and TLR3 receptor. At last, in silico cloning was executed to get the subunit vaccine restriction clone into pET28a vectro to express it in microbial expression system. Additionally, this study warrants the experimental evaluation for the validation purposes.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India
| | - Surbhi Dahiya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India
| | - Jarjapu Mahita
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh (305817), Ajmer, Rajasthan, India.
| |
Collapse
|
5
|
Pandey RK, Ali M, Ojha R, Bhatt TK, Prajapati VK. Development of multi-epitope driven subunit vaccine in secretory and membrane protein of Plasmodium falciparum to convey protection against malaria infection. Vaccine 2018; 36:4555-4565. [PMID: 29921492 DOI: 10.1016/j.vaccine.2018.05.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 10/28/2022]
Abstract
Malaria infection is the severe health concern for a long time. As per the WHO reports, the malarial infection causes huge mortality all around the world and is incomparable with any other infectious diseases. The absence of effective treatment options and increasing drug resistance to the available therapeutics like artemisinin and other derivatives demand an efficient alternative to overcome this death burden. Here, we performed the literature survey and sorted the Plasmodium falciparum secretory and membrane proteins to design multi-epitope subunit vaccine using an adjuvant, B-cell- and T-cell epitopes. Every helper T-lymphocyte (HTL) epitope was IFN-γ positive and IL-4 non-inducer. The physicochemical properties, allergenicity, and antigenicity of designed vaccine were analyzed for the safety concern. Homology modeling and refinement were performed to obtain the functional tertiary structure of vaccine protein followed by its molecular docking with the toll-like receptor-4 (TLR-4) immune receptor. Molecular dynamics simulation was performed to check the interaction and stability of the receptor-ligand complex. Lastly, in silico cloning was performed to generate the restriction clone of designed vaccine for the futuristic expression in a microbial expression system. This way, we designed the multi-epitope subunit vaccine to serve the people living in the global endemic zone.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Mudassar Ali
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|