1
|
Popkin-Hall ZR, Carey-Ewend K, Aghakhanian F, Oriero EC, Seth MD, Kashamuka MM, Ngasala B, Ali IM, Mukomena ES, Mandara CI, Kharabora O, Sendor R, Simkin A, Amambua-Ngwa A, Tshefu A, Fola AA, Ishengoma DS, Bailey JA, Parr JB, Lin JT, Juliano JJ. Population Genomics of Plasmodium malariae from Four African Countries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.07.24313132. [PMID: 39314932 PMCID: PMC11419228 DOI: 10.1101/2024.09.07.24313132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Plasmodium malariae is geographically widespread but neglected and may become more prevalent as P. falciparum declines. We completed the largest genomic study of African P. malariae to-date by performing hybrid capture and sequencing of 77 isolates from Cameroon (n=7), the Democratic Republic of the Congo (n=16), Nigeria (n=4), and Tanzania (n=50) collected between 2015 and 2021. There is no evidence of geographic population structure. Nucleotide diversity was significantly lower than in co-localized P. falciparum isolates, while linkage disequilibrium was significantly higher. Genome-wide selection scans identified no erythrocyte invasion ligands or antimalarial resistance orthologs as top hits; however, targeted analyses of these loci revealed evidence of selective sweeps around four erythrocyte invasion ligands and six antimalarial resistance orthologs. Demographic inference modeling suggests that African P. malariae is recovering from a bottleneck. Altogether, these results suggest that P. malariae is genomically atypical among human Plasmodium spp. and panmictic in Africa.
Collapse
Affiliation(s)
- Zachary R. Popkin-Hall
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA 27599
| | - Kelly Carey-Ewend
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Farhang Aghakhanian
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA 27599
| | - Eniyou C. Oriero
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| | - Misago D. Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Bagamoyo, Tanzania
| | - Innocent M. Ali
- Faculty of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Eric Sompwe Mukomena
- Programme nationale de lutte contre le paludisme, Democratic Republic of Congo
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of Congo
| | | | - Oksana Kharabora
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA 27599
| | - Rachel Sendor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Alfred Simkin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI USA 02906
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| | - Antoinette Tshefu
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Abebe A. Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI USA 02906
| | - Deus S. Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI USA 02906
- Center for Computational Molecular Biology, Brown University, RI, USA 02906
| | - Jonathan B. Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA 27599
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Curriculum of Genetics and Molecular Biology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
| | - Jessica T. Lin
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA 27599
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jonathan J. Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA 27599
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Curriculum of Genetics and Molecular Biology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
| |
Collapse
|
2
|
Zhu H, Zhu D, Wu K, He W, Li L, Li T, Liu L, Liu Z, Song X, Cheng W, Mo J, Yao Y, Li J. Establishment and evaluation of a qPCR method for the detection of pfmdr1 mutations in Plasmodium falciparum, the causal agent of fatal malaria. Diagn Microbiol Infect Dis 2024; 110:116400. [PMID: 38909426 DOI: 10.1016/j.diagmicrobio.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Drug resistance surveillance is a major integral part of malaria control programs. Molecular methods play a pivotal role in drug resistance detection and related molecular research. This study aimed to develop a rapid and accurate detection method for drug resistance of Plasmodium falciparum (P. falciparum). A quantitative real-time PCR (qPCR) assay has been developed that identifies the mutation at locus A256T in the P.falciparum multi-drug resistance(pfmdr1) gene producing amino acid change at position 86. The results of 198 samples detected by qPCR were consistent with nested PCR and sequencing, giving an accuracy of 94.3%. The sensitivity, specificity, positive and negative predictive value of qPCR were 85.7%, 97.6%, 90.0% and 96.4%, respectively. The results of qPCR are basically consistent with the nested PCR, which is expected to replace the nested PCR as a new molecular biological method for drug resistance detection, providing reliable technical support for global malaria prevention and control.
Collapse
Affiliation(s)
- Huiyin Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China; Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Daiqian Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Kai Wu
- Wuhan Centers for Disease Prevention and Control, Wuhan 430024, PR China
| | - Wei He
- Jiangnan University, Wuxi 442000, PR China
| | - Liugen Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Tongfei Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Long Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiaonan Song
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Weijia Cheng
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jinyu Mo
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yi Yao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Jian Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China.
| |
Collapse
|
3
|
Fitri LE, Pawestri AR, Winaris N, Endharti AT, Khotimah ARH, Abidah HY, Huwae JTR. Antimalarial Drug Resistance: A Brief History of Its Spread in Indonesia. Drug Des Devel Ther 2023; 17:1995-2010. [PMID: 37431492 PMCID: PMC10329833 DOI: 10.2147/dddt.s403672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Malaria remains to be a national and global challenge and priority, as stated in the strategic plan of the Indonesian Ministry of Health and Sustainable Development Goals. In Indonesia, it is targeted that malaria elimination can be achieved by 2030. Unfortunately, the development and spread of antimalarial resistance inflicts a significant risk to the national malaria control programs which can lead to increased malaria morbidity and mortality. In Indonesia, resistance to widely used antimalarial drugs has been reported in two human species, Plasmodium falciparum and Plasmodium vivax. With the exception of artemisinin, resistance has surfaced towards all classes of antimalarial drugs. Initially, chloroquine, sulfadoxine-pyrimethamine, and primaquine were the most widely used antimalarial drugs. Regrettably, improper use has supported the robust spread of their resistance. Chloroquine resistance was first reported in 1974, while sulfadoxine-pyrimethamine emerged in 1979. Twenty years later, most provinces had declared treatment failures of both drugs. Molecular epidemiology suggested that variations in pfmdr1 and pfcrt genes were associated with chloroquine resistance, while dhfr and dhps genes were correlated with sulfadoxine-pyrimethamine resistance. Additionally, G453W, V454C and E455K of pfk13 genes appeared to be early warning sign to artemisinin resistance. Here, we reported mechanisms of antimalarial drugs and their development of resistance. This insight could provide awareness toward designing future treatment guidelines and control programs in Indonesia.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease and Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Aulia Rahmi Pawestri
- Department of Parasitology Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease and Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nuning Winaris
- Department of Parasitology Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease and Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Alif Raudhah Husnul Khotimah
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Education, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Hafshah Yasmina Abidah
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Education, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - John Thomas Rayhan Huwae
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Study Program Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
4
|
Ali Q, Zahid O, Mhadhbi M, Jones B, Darghouth MA, Raynes G, Afshan K, Birtles R, Sargison ND, Betson M, Chaudhry U. Genetic characterisation of the Theileria annulata cytochrome b locus and its impact on buparvaquone resistance in bovine. Int J Parasitol Drugs Drug Resist 2022; 20:65-75. [PMID: 36183440 PMCID: PMC9529669 DOI: 10.1016/j.ijpddr.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022]
Abstract
Control of tropical theileriosis, caused by the apicomplexan Theileria annulata, depends on the use of a single drug, buparvaquone, the efficacy of which is compromised by the emergence of resistance. The present study was undertaken to improve understanding of the role of mutations conferring buparvaquone resistance in T. annulata, and the effects of selection pressures on their emergence and spread. First, we investigated genetic characteristics of the cytochrome b locus associated with buparvaquone resistance in 10 susceptible and 7 resistant T. annulata isolates. The 129G (GGC) mutation was found in the Q01 binding pocket and 253S (TCT) and 262S (TCA) mutations were identified within the Q02 binding pocket. Next, we examined field isolates and identified cytochrome b mutations 129G (GGC), 253S (TCT) and 262S (TCA) in 21/75 buffalo-derived and 19/119 cattle-derived T. annulata isolates, providing evidence of positive selection pressure. Both hard and soft selective sweeps were identified, with striking differences between isolates. For example, 19 buffalo-derived and 7 cattle-derived isolates contained 129G (GGC) and 253S (TCT) resistance haplotypes at a high frequency, implying the emergence of resistance by a single mutation. Two buffalo-derived and 12 cattle-derived isolates contained equally high frequencies of 129G (GGC), 253S (TCT), 129G (GGC)/253S (TCT) and 262S (TCA) resistance haplotypes, implying the emergence of resistance by pre-existing or recurrent mutations. Phylogenetic analysis further revealed that 9 and 21 unique haplotypes in buffalo and cattle-derived isolates were present in a single lineage, suggesting a single origin. We propose that animal migration between farms is an important factor in the spread of buparvaquone resistance in endemic regions of Pakistan. The overall outcomes will be useful in understanding how drug resistance emerges and spreads, and this information will help design strategies to optimise the use and lifespan of the single most drug use to control tropical theileriosis.
Collapse
Affiliation(s)
- Qasim Ali
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Osama Zahid
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire, Université de La Manouba, Sidi Thabet, Tunisia
| | - Ben Jones
- School of Veterinary Medicine, University of Surrey, UK
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire, Université de La Manouba, Sidi Thabet, Tunisia
| | - George Raynes
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Kiran Afshan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Richard Birtles
- School of Science, Engineering and Environment, University of Salford, UK
| | - Neil D. Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Martha Betson
- School of Veterinary Medicine, University of Surrey, UK
| | - Umer Chaudhry
- School of Veterinary Medicine, University of Surrey, UK,Corresponding author. School of Veterinary Medicine, University of Surrey, GU2 7AL, UK.
| |
Collapse
|
5
|
Huang F, Cui Y, Yan H, Liu H, Guo X, Wang G, Zhou S, Xia Z. Prevalence of antifolate drug resistance markers in Plasmodium vivax in China. Front Med 2022; 16:83-92. [PMID: 35257293 DOI: 10.1007/s11684-021-0894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
The dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of Plasmodium vivax, as antifolate resistance-associated genes were used for drug resistance surveillance. A total of 375 P. vivax isolates collected from different geographical locations in China in 2009-2019 were used to sequence Pvdhfr and Pvdhps. The majority of the isolates harbored a mutant type allele for Pvdhfr (94.5%) and Pvdhps (68.2%). The most predominant point mutations were S117T/N (77.7%) in Pvdhfr and A383G (66.8%) in Pvdhps. Amino acid changes were identified at nine residues in Pvdhfr. A quadruple-mutant haplotype at 57, 58, 61, and 117 was the most frequent (57.4%) among 16 distinct Pvdhfr haplotypes. Mutations in Pvdhps were detected at six codons, and the double-mutant A383G/A553G was the most prevalent (39.3%). Pvdhfr exhibited a higher mutation prevalence and greater diversity than Pvdhps in China. Most isolates from Yunnan carried multiple mutant haplotypes, while the majority of samples from temperate regions and Hainan Island harbored the wild type or single mutant type. This study indicated that the antifolate resistance levels of P. vivax parasites were different across China and molecular markers could be used to rapidly monitor drug resistance. Results provided evidence for updating national drug policy and treatment guidelines.
Collapse
Affiliation(s)
- Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China.
| | - Yanwen Cui
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| | - Hui Liu
- Yunnan Institute of Parasitic Diseases, Puer, 665000, China
| | - Xiangrui Guo
- Yingjiang County for Disease Control and Prevention, Yingjiang, 679300, China
| | - Guangze Wang
- Hainan Center for Disease Control & Prevention, Haikou, 570203, China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| |
Collapse
|
6
|
Slater L, Betson M, Ashraf S, Sargison N, Chaudhry U. Current methods for the detection of antimalarial drug resistance in Plasmodium parasites infecting humans. Acta Trop 2021; 216:105828. [PMID: 33465353 DOI: 10.1016/j.actatropica.2021.105828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/19/2022]
Abstract
Malaria is the world's deadliest parasitic disease. Great progress has been made in the fight against malaria over the past two decades, but this has recently begun to plateau, in part due to the global development of antimalarial drug resistance. The ability to track drug resistance is necessary to achieve progress in treatment, disease surveillance and epidemiology, which has prompted the development of advanced diagnostic methods. These new methods provide unprecedented access to information that can help to guide public health policies. Development of new technologies increases the potential for high throughput and reduced costs of diagnostic tests; improving the accessibility of tools to investigate the forces driving disease dynamics and, ultimately, clinical outcomes for malaria patients and public health. This literature review provides a summary of the methods currently available for the detection of antimalarial drug resistance from the examination of patients' blood samples. While no single method is perfect for every application, many of the newly developed methods give promise for more reliable and efficient characterisation of Plasmodium resistance in a range of settings. By exploiting the strengths of the tools available, we can develop a deeper understanding of the evolutionary and spatiotemporal dynamics of this disease. This will translate into more effective disease control, better-informed policy, and more timely and successful treatment for malaria patients.
Collapse
|
7
|
Shaukat A, Ali Q, Raud L, Wahab A, Khan TA, Rashid I, Rashid M, Hussain M, Saleem MA, Sargison ND, Chaudhry U. Phylogenetic analysis suggests single and multiple origins of dihydrofolate reductase mutations in Plasmodium vivax. Acta Trop 2021; 215:105821. [PMID: 33406444 DOI: 10.1016/j.actatropica.2020.105821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/30/2022]
Abstract
Pyrimethamine was first introduced for the treatment of malaria in Asia and Africa during the early 1980s, replacing chloroquine, and has become the first line of drugs in many countries. In recent years, development of pyrimethamine resistance in Plasmodium vivax has become a barrier to effective malaria control strategies. Here, we describe the use of meta-barcoded deep amplicon sequencing technology to assess the evolutionary origin of pyrimethamine resistance by analysing the flanking region of dihydrofolate reductase (dhfr) locus. The genetic modelling suggests that 58R and 173L single mutants and 58R/117N double mutants are present on a single lineage; suggesting a single origin of these mutations. The triple mutants (57L/58R/117N, 58R/61M/117N and 58R/117N/173L) share the lineage of 58R/117N, suggesting a common origin. In contrast, the 117N mutant is present on two separate lineages suggesting that there are multiple origins of this mutation. We characterised the allele frequency of the P. vivax dhfr locus. Our results support the view that the single mutation of 117N and double mutations of 58R/117N arise commonly, whereas the single mutation of 173L and triple mutations of 57L/58R/117N, 58R/61M/117N and 58R/117N/173L are less common. Our work will help to inform mitigation strategies for pyrimethamine resistance in P. vivax.
Collapse
Affiliation(s)
| | - Qasim Ali
- Gomal University, Dera Ismail Khan, Pakistan
| | | | - Abdul Wahab
- Kohat University of Science and Technology, Pakistan
| | - Taj Ali Khan
- Kohat University of Science and Technology, Pakistan
| | - Imran Rashid
- University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | | | | | | | | | - Umer Chaudhry
- University of Edinburgh, UK; University of Surrey, United Kingdom.
| |
Collapse
|
8
|
Wahab A, Shaukat A, Ali Q, Hussain M, Khan TA, Khan MAU, Rashid I, Saleem MA, Evans M, Sargison ND, Chaudhry U. A novel metabarcoded 18S ribosomal DNA sequencing tool for the detection of Plasmodium species in malaria positive patients. INFECTION GENETICS AND EVOLUTION 2020; 82:104305. [PMID: 32247865 DOI: 10.1016/j.meegid.2020.104305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Various PCR based methods have been described for the diagnosis of malaria, but most depend on the use of Plasmodium species-specific probes and primers; hence only the tested species are identified and there is limited available data on the true circulating species diversity. Sensitive diagnostic tools and platforms for their use are needed to detect Plasmodium species in both clinical cases and asymptomatic infections that contribute to disease transmission. We have recently developed for the first time a novel high throughput 'haemoprotobiome' metabarcoded DNA sequencing method and applied it for the quantification of haemoprotozoan parasites (Theleria and Babesia) of livestock. Here, we describe a novel, high throughput method using an Illumina MiSeq platform to demonstrate the proportions of Plasmodium species in metabarcoded DNA samples derived from human malaria patients. Plasmodium falciparum and Plasmodium vivax positive control gDNA was used to prepare mock DNA pools of parasites to evaluate the detection threshold of the assay for each of the two species. The different mock pools demonstrate the accurate detection ability and to show the proportions of each of the species being present. We then applied the assay to malaria-positive human samples to show the species composition of Plasmodium communities in the Punjab province of Pakistan and in the Afghanistan-Pakistan tribal areas. The diagnostic performance of the deep amplicon sequencing method was compared to an immunochromatographic assay that is widely used in the region. The deep amplicon sequencing showed that P. vivax was present in 69.8%, P. falciparum in 29.5% and mixed infection in 0.7% patients examined. The immunochromatographic assay showed that P. vivax was present in 65.6%, P. falciparum in 27.4%, mixed infection 0.7% patients and 6.32% malaria-positive cases were negative in immunochromatographic assay, but positive in the deep amplicon sequencing. Overall, metabarcoded DNA sequencing demonstrates better diagnostic performance, greatly increasing the estimated prevalence of Plasmodium infection. The next-generation sequencing method using metabarcoded DNA has potential applications in the diagnosis, surveillance, treatment, and control of Plasmodium infections, as well as to study the parasite biology.
Collapse
Affiliation(s)
- Abdul Wahab
- University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ayaz Shaukat
- University of Central Punjab, Lahore, Punjab, Pakistan
| | - Qasim Ali
- Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Mubashir Hussain
- University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Taj Ali Khan
- University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | | | - Imran Rashid
- University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | | | - Mike Evans
- Royal Dick School of Veterinary Studies, University of Edinburgh, UK
| | - Neil D Sargison
- Royal Dick School of Veterinary Studies, University of Edinburgh, UK.
| | | |
Collapse
|