1
|
Fleischer R, Eibner GJ, Schwensow NI, Pirzer F, Paraskevopoulou S, Mayer G, Corman VM, Drosten C, Wilhelm K, Heni AC, Sommer S, Schmid DW. Immunogenetic-pathogen networks shrink in Tome's spiny rat, a generalist rodent inhabiting disturbed landscapes. Commun Biol 2024; 7:169. [PMID: 38341501 PMCID: PMC10858909 DOI: 10.1038/s42003-024-05870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Anthropogenic disturbance may increase the emergence of zoonoses. Especially generalists that cope with disturbance and live in close contact with humans and livestock may become reservoirs of zoonotic pathogens. Yet, whether anthropogenic disturbance modifies host-pathogen co-evolutionary relationships in generalists is unknown. We assessed pathogen diversity, neutral genome-wide diversity (SNPs) and adaptive MHC class II diversity in a rodent generalist inhabiting three lowland rainforest landscapes with varying anthropogenic disturbance, and determined which MHC alleles co-occurred more frequently with 13 gastrointestinal nematodes, blood trypanosomes, and four viruses. Pathogen-specific selection pressures varied between landscapes. Genome-wide diversity declined with the degree of disturbance, while MHC diversity was only reduced in the most disturbed landscape. Furthermore, pristine forest landscapes had more functional important MHC-pathogen associations when compared to disturbed forests. We show co-evolutionary links between host and pathogens impoverished in human-disturbed landscapes. This underscores that parasite-mediated selection might change even in generalist species following human disturbance which in turn may facilitate host switching and the emergence of zoonoses.
Collapse
Affiliation(s)
- Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Georg Joachim Eibner
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nina Isabell Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Fabian Pirzer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Gerd Mayer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Victor Max Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Robert Koch Institute, Nordufer 20, Berlin, 13353, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Robert Koch Institute, Nordufer 20, Berlin, 13353, Germany
- German Centre for Infection Research (DZIF), Berlin, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Alexander Christoph Heni
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
| | - Dominik Werner Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
2
|
Belasen AM, Amses KR, Clemons RA, Becker CG, Toledo LF, James TY. Habitat fragmentation in the Brazilian Atlantic Forest is associated with erosion of frog immunogenetic diversity and increased fungal infections. Immunogenetics 2022; 74:431-441. [PMID: 35080658 PMCID: PMC11344651 DOI: 10.1007/s00251-022-01252-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/12/2022] [Indexed: 11/05/2022]
Abstract
Habitat fragmentation and infectious diseases threaten wildlife globally, but the interactions of these threats are poorly understood. For instance, while habitat fragmentation can impact genetic diversity at neutral loci, the impacts on disease-relevant loci are less well-studied. We examined the effects of habitat fragmentation in Brazil's Atlantic Forest on amphibian genetic diversity at an immune locus related to antigen presentation and detection (MHC IIB Exon 2). We used a custom high-throughput assay to sequence a fragment of MHC IIB and quantified Batrachochytrium dendrobatidis (Bd) infections in six frog species in two Atlantic Forest regions. Habitat fragmentation was associated with genetic erosion at MHC IIB Exon 2. This erosion was most severe in forest specialists. Significant Bd infections were detected only in one Atlantic Forest region, potentially due to relatively higher elevation. In this region, forest specialists showed an increase in both Bd prevalence and infection loads in fragmented habitats. Reduced population-level MHC IIB diversity was associated with increased Bd infection risk. On the individual level, MHC IIB heterozygotes exhibited a trend toward reduced Bd infection risk, although this was marginally non-significant. Our results suggest that habitat fragmentation increases Bd infection susceptibility in amphibians, mediated at least in part through erosion of immunogenetic diversity. Our findings have implications for management of fragmented populations in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Anat M Belasen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Kevin R Amses
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca A Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - C Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Minias P, Janiszewska A, Pikus E, Zadworny T, Anderwald D. MHC Reflects Fine-Scale Habitat Structure in White-Tailed Eagles, Haliaeetus albicilla. J Hered 2021; 112:335-345. [PMID: 33942876 DOI: 10.1093/jhered/esab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 11/12/2022] Open
Abstract
The major histocompatibility complex (MHC) genes code for key immune receptors responsible for recognition of intra- and extracellular pathogens (MHC class I and class II, respectively). It was hypothesized that MHC polymorphism can be maintained via fluctuating selection resulting from between-habitat variation in pathogen regimes. We examined associations between MHC class I and class II genes and habitat structure in an apex avian predator, the white-tailed eagle, Haliaeetus albicilla. We genotyped MHC class I and class II genes in ca. 150 white-tailed eagle chicks from nearly 100 nesting territories distributed across 3 distinct populations in Poland. Habitat structure was quantified at the level of foraging territories and directly at the nest sites. We found strong support for associations of habitat traits with diversity and allelic composition at the MHC class II. Forest area within territory and forest productivity were identified as the major habitat predictors of MHC class II polymorphism, whereas other habitat traits (distance to nearest open water, grassland, and water area within territory or understory presence) showed fewer associations with class II alleles. In contrast, there was little support for associations between MHC class I genes and habitat structure. All significant associations were apparent at the within-population level rather than between populations. Our results suggest that extracellular (rather than intracellular) pathogens may exert much stronger selective pressure on the white-tailed eagle. Associations of habitat structure with MHC class II may reflect fluctuating (balancing) selection, which maintains MHC diversity within populations.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha, Łódź, Poland
| | - Aleksandra Janiszewska
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha, Łódź, Poland
| | - Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha, Łódź, Poland
| | - Tomasz Zadworny
- Regional Directorate of Environmental Protection in Łódź, Traugutta, Łódź, Poland
| | | |
Collapse
|