1
|
Yan N, Yue H, Liu Q, Wang G, Tang C, Liao M. Isolation and Characteristics of a Novel Aichivirus D from Yak. Microbiol Spectr 2023; 11:e0009923. [PMID: 37097198 PMCID: PMC10269754 DOI: 10.1128/spectrum.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Aichivirus D (AiV-D) is a newly emerging Kobuvirus detected in bovine and sheep, and information is limited regarding its biological significance and prevalence. This study aimed to explore both the prevalence and characteristics of AiV-D in yaks. From May to August 2021, 117 fecal samples were collected from yaks with diarrhea in three provinces of China's Qinghai-Tibet Plateau, 15 of which were selected and pooled for metagenomic analysis. A high abundance of AiV-D sequences was obtained. Of the 117 diarrhea samples, 29 (24.8%) tested AiV-D-positive, including 33.3% (14/42) from Sichuan, 21.1% (8/38) from Qinghai, and 18.9% (7/37) from Tibet, respectively, suggesting a wide geographical distribution of the AiV-D in yaks in the Qinghai-Tibet Plateau. Furthermore, three AiV-D strains were successfully isolated using Vero cells. Significantly, the AiV-D strain could cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, duodenum, colon, cecum, and rectum. Based on phylogenetic analysis of the genome and capsid protein P1 (VP0, VP3, and VP1 genes), the yak AiV-D strains likely represent a novel genotype of AiV-D. On the whole, this study identified a novel genotype of AiV-D from yaks, which was successfully isolated, and confirmed that this virus is a diarrhea pathogen in yaks and has a wide geographical distribution in the Qinghai-Tibet Plateau. Our results expand the host range of AiV-D and the pathogen spectrum of yaks and have significant implications for diagnosing and controlling diarrhea in yaks. IMPORTANCE In this study, we identified and successfully isolated a novel genotype of AiV-D from yaks. Animal infection confirmed that this virus can cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, cecum, duodenum, colon, and rectum. All of these results have significant implications for diagnosing and controlling diarrhea in yaks. These novel AiV-D strains have a wide geographical distribution in yaks from the Qinghai-Tibet Plateau in China. In addition to expanding the host range of AiV-D and the pathogen spectrum of yaks, these findings can increase knowledge of the prevalence and diversity of AiV-D.
Collapse
Affiliation(s)
- Nan Yan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Field Observation and Experiment Station on Animal Blight of Guangdong Province, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Field Observation and Experiment Station on Animal Blight of Guangdong Province, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
2
|
Liu Y, Liu L, Wang J, Wang T, Gao Y, Sun X, Yuan W, Li R, Wang J. Development of a new TaqMan-based real-time RT-PCR assay for the specific detection of bovine kobuvirus. Front Vet Sci 2022; 9:953599. [PMID: 35990282 PMCID: PMC9386250 DOI: 10.3389/fvets.2022.953599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine kobuvirus (BKV) is a novel kobuvirus considered to be closely related to calf diarrhea and has become a worldwide epidemic. Currently, the BKV lacks an efficient and convenient detection method to assist the research on BKV prevalence. In this study, a new and specific TaqMan-based real-time RT-PCR for the detection of BKV was developed using the conserved region of the 3D gene. The assay was highly specific for BKV, without cross-amplification with other non-targeted pathogens. The limit of detection of this assay was 102 copies. Standard curves showed a strong linear correlation from 102 to 106 copies of BKV standard RNA per reaction, and the parameters revealed as a slope of −3.54, efficiency of 91.64%, and regression coefficients (R2) of 0.998. The assay was also reproducible, with the intra-assay and inter-assay coefficient of variation <1.0%. The newly developed real-time RT-PCR was validated using 243 fecal samples collected from diarrheic or non-diarrheic cattle from nine regions in Hebei province and revealed the positive detection of BKV at a ratio of 19.34% (47/243). Sequencing of partial 3D genes from 13 positive samples and the following phylogenetic analysis demonstrated the reliability of the assay. In conclusion, the newly developed TaqMan-based real-time RT-PCR could be used for the screening and epidemic monitoring of BKV.
Collapse
Affiliation(s)
- Yuelin Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Department of Animal and Plant Quarantine, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| | - Libing Liu
- Department of Animal and Plant Quarantine, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| | - Jinfeng Wang
- Department of Animal and Plant Quarantine, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| | - Ting Wang
- Department of Animal Genetics and Breeding, Hebei Mountain Agricultural Technology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Yaxin Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaoxia Sun
- Department of Animal and Plant Quarantine, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| | - Wanzhe Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ruiwen Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- *Correspondence: Ruiwen Li
| | - Jianchang Wang
- Department of Animal and Plant Quarantine, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
- Jianchang Wang
| |
Collapse
|
3
|
Zhu Q, Li B, Sun D. Bovine Astrovirus—A Comprehensive Review. Viruses 2022; 14:v14061217. [PMID: 35746688 PMCID: PMC9228355 DOI: 10.3390/v14061217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
Bovine astrovirus (BoAstV) is a small non-enveloped virus with a single-stranded positive-sense RNA. In 1978, BoAstV was first found in calf diarrhea fecal samples in the United Kingdom and since then it has been reported in many other countries. It has wide tissue tropism and can infect multiple organs, including the intestine, nerves and respiratory tract. Since BoAstV is prevalent in healthy as well as clinically infected bovines, and is mostly associated with co-infection with other viruses, the pathogenic nature of BoAstV is still unclear. At present, there are no stable passage cell lines available for the study of BoAstV and animal model experiments have not been described. In addition, it has been reported that BoAstV may have the possibility of cross-species transmission. This review summarizes the current state of knowledge about BoAstV, including the epidemiology, evolution analysis, detection methods, pathogenesis and potential cross species transmission, to provide reference for further research of BoAstV.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-04596819121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-04596819121 (D.S.)
| |
Collapse
|
4
|
Savard C, Ariel O, Fredrickson R, Wang L, Broes A. Detection and genome characterization of bovine kobuvirus (BKV) in faecal samples from diarrhoeic calves in Quebec, Canada. Transbound Emerg Dis 2022; 69:1649-1655. [PMID: 33788413 PMCID: PMC8938984 DOI: 10.1111/tbed.14086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Kobuviruses are known to infect the gastrointestinal tract of different animal species. Since its discovery in 2003, bovine kobuvirus (BKV) has been identified in faecal samples from diarrhoeic cattle in many countries, but only recently in North America. Although its possible role as an agent of calf diarrhoea remains to be determined, evidence is mounting. Our study reports for the first time the detection of BKV in faecal samples from diarrhoeic calves raised in Quebec, Canada. BKV was more commonly identified than eight known and common enteric calf pathogens. Further sequence analysis revealed that Canada BKV strain 1,043,507 was more closely correlated with the US BKV IL35164 strain than other BKV strains with complete genome. Continued surveillance and genomic characterization are needed to monitor BKV in the cattle around the world.
Collapse
Affiliation(s)
| | | | - Richard Fredrickson
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
5
|
Hause BM, Nelson E, Christopher-Hennings J. Identification of a novel statovirus in a faecal sample from a calf with enteric disease. J Gen Virol 2021; 102. [PMID: 34554084 DOI: 10.1099/jgv.0.001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel clade of RNA viruses was identified in the mammalian gastrointestinal tract by next-generation sequencing. Phylogenetically, these viruses are related to the genera Tombusviridae (plant viruses) and Flaviviridae, which includes mammalian, avian and insect hosts. Named in line with their characterization as stool-associated Tombus-like viruses, it is unclear if statoviruses infect mammals or are dietary in origin. Here, metagenomic sequencing of faecal material collected from a 10-week-old calf with enteric disease found that 20 % of the reads mapped to a de novo-assembled 4 kb contig with homology to statoviruses. Phylogenetic analysis of the statovirus genome found a clear evolutionary relationship with statovirus A, but, with only 47 % similarity, we propose that the statovirus sequence presents a novel species, statovirus F. A TaqMan PCR targeting statovirus F performed on faecal material found a cycle threshold of 11, suggesting a high titre of virus shed from the calf with enteric disease. A collection of 48 samples from bovine enteric disease diagnostic submissions were assayed by PCR to investigate statovirus F prevalence and 6 of 48 (12.5 %) were positive. An ELISA to detect antibodies to the coat protein found that antibodies to statovirus F were almost ubiquitous in bovine serum. Combined, the PCR and ELISA results suggest that statovirus F commonly infects cattle. Further research is needed to elucidate the aetiological significance of statovirus infection.
Collapse
Affiliation(s)
- Ben M Hause
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Jane Christopher-Hennings
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| |
Collapse
|
6
|
Hause BM, Nelson E, Christopher-Hennings J. Identification of boosepivirus B in U.S. calves. Arch Virol 2021; 166:3193-3197. [PMID: 34528138 PMCID: PMC8442811 DOI: 10.1007/s00705-021-05231-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Bovine enteric disease has a complex etiology that can include viral, bacterial, and parasitic pathogens and is a significant source of losses due to morbidity and mortality. Boosepivirus was identified in calves with enteric disease with unclear etiology in Japan in 2009 and has not been reported elsewhere. Metagenomic sequencing and PCR here identified boosepivirus in bovine enteric disease diagnostic submissions from six states in the USA with 98% sequence identity to members of the species Boosepivirus B. In all cases, boosepivirus was identified as a coinfection with the established pathogens bovine coronavirus, bovine rotavirus, and cryptosporidia. Further research is needed to determine the clinical significance of boosepivirus infection.
Collapse
Affiliation(s)
- Ben M Hause
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Jane Christopher-Hennings
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| |
Collapse
|
7
|
Abstract
Livestock products supply about 13 percent of energy and 28 percent of protein in diets consumed worldwide. Diarrhea is a leading cause of sickness and death of beef and dairy calves in their first month of life and also affecting adult cattle, resulting in large economic losses and a negative impact on animal welfare. Despite the usual multifactorial origin, viruses are generally involved, being among the most important causes of diarrhea. There are several viruses that have been confirmed as etiological agents (i.e., rotavirus and coronavirus), and some viruses that are not yet confirmed as etiological agents. This review summarizes the viruses that have been detected in the enteric tract of cattle and tries to deepen and gather knowledge about them.
Collapse
|
8
|
Dall Agnol AM, Lorenzetti E, Leme RA, Ladeia WA, Mainardi RM, Bernardi A, Headley SA, Freire RL, Pereira UP, Alfieri AF, Alfieri AA. Severe outbreak of bovine neonatal diarrhea in a dairy calf rearing unit with multifactorial etiology. Braz J Microbiol 2021; 52:2547-2553. [PMID: 34241827 PMCID: PMC8267503 DOI: 10.1007/s42770-021-00565-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022] Open
Abstract
This study describes the etiological diversity observed in a severe neonatal diarrhea outbreak with morbidity and mortality rates of 80 and 20%, respectively, with detection of mixed infections with viral, bacterial, and protozoan disease agents in a dairy calf rearing unit. Diarrheic fecal samples were collected from eight 5 to 18 days of age calves and were submitted to the investigation of the presence of rotavirus A (RVA), bovine coronavirus (BCoV), bovine kobuvirus (BKV), bovine viral diarrhea virus 1 and 2 (BVDV-1 and BVDV-2), enteropathogenic Escherichia coli (ETEC), Salmonella sp., and Cryptosporidium spp. Fragments of the small intestine of one calf with diarrhea that spontaneously died were submitted for histopathological analyses. The most frequent infectious agent detected in diarrheic fecal samples was BKV (8/8—100%), followed by RVA (5/8—62.5%), BVDV (5/8—62.5%), Cryptosporidium parvum (5/8—62.5%), ETEC (4/8—50%), and Cryptosporidium ryanae (1/8—12.5%). These etiological agents were found in mixed infections with two or more pathogens per diarrheic fecal sample. The association of viral and protozoan pathogens was the most frequently identified (37.5%) in these samples, followed by viral and bacterial (25%); viral, bacterial, and protozoan (25%); and only viral agents (12.5%). BCoV and Salmonella sp. were not identified in the diarrheic fecal samples analyzed. Additionally, histopathology of the small intestine diagnosed chronic lymphocytic enteritis. In conclusion, in calf rearing units, the adoption and strict monitoring of health management practices are critical to the success of this calf creation system.
Collapse
Affiliation(s)
- Alais M Dall Agnol
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | - Raquel A Leme
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Winni A Ladeia
- Laboratory of Protozoa, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Raffaella M Mainardi
- Laboratory of Animal Bacteriology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Selwyn A Headley
- National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Roberta L Freire
- Laboratory of Protozoa, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ulisses P Pereira
- Laboratory of Animal Bacteriology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alice F Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amauri A Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil. .,National Institute of Science and Technology of Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Paraná, Brazil. .,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
9
|
Hao L, Chen C, Bailey K, Wang L. Bovine kobuvirus-A comprehensive review. Transbound Emerg Dis 2021; 68:1886-1894. [PMID: 33146459 DOI: 10.1111/tbed.13909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023]
Abstract
Bovine kobuvirus (BKV) is a single-stranded, positive sense, non-enveloped RNA virus in genus Kobuvirus of family Picornavirus. BKV was first identified in the culture media of HeLa cell containing calf serum in 2003. Since then, BKV has been detected in 13 countries of four different continents, suggesting widespread in the world. Herein, we review the detection and genomic characterization of BKV in 13 countries. All studies tested bovine faecal samples for BKV. These studies provide evidence that BKV might be a causative agent for neonatal calf diarrhoea. Therefore, further efforts including animal challenge study are urgently needed to unveil the pathogenicity of BKV.
Collapse
Affiliation(s)
- Lili Hao
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Chaoxi Chen
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Keith Bailey
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Abi KM, Yu Z, Jing ZZ, Tang C. Identification of a novel Aichivirus D in sheep. INFECTION GENETICS AND EVOLUTION 2021; 91:104810. [PMID: 33741511 DOI: 10.1016/j.meegid.2021.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel kobuvirus was found in diarrheal fecal samples of Tibetan sheep using a viral metagenomics approach, and a full kobuvirus genome was successfully obtained by RT-PCR from a diarrheal fecal sample. The full genomic sequence was 8485 nucleotides (nt) in length with a standard picornavirus genome organization. The novel genome shares 62.9% and 77.8% nt homology with Aichivirus D1 genotype strain 1-22-KoV, and Aichivirus D2 genotype strain 2-44-KoV, respectively. According to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV), the new kobuvirus belongs to Aichivirus species D. Interestingly, compared with 2 known Aichivirus D genotype strains, the novel Aichivirus D has unique amino acid substitutions in the 5'untranslated region (-UTR), VP0, VP3, and VP1, with a recombination event in the 2C region.These characteristics make the novel Aichivirus D cluster into an independent branch in the phylogenetic tree, suggesting that strain may represent a novel genotype in Aichivirus D. Moreover, the novel Aichivirus D was detected in 9.2% (18/195) of the sheep diarrheal fecal samples from 4 farms in 3 counties of the Qinghai Tibet Plateau in China. In addition, full-length VP0, VP3, and VP1 genes were successfully obtained from 12 samples from 4 farms, and phylogenetic analysis based on these genes revealed a unique evolutionary pattern for this novel Aichivirus D strain. This study identified a novel Aichivirus D that is circulating in sheep in Qinghai Tibet Plateau in China and these findings provide a better understanding of the epidemiologic and genetic evolution of kobuviruses.
Collapse
Affiliation(s)
- Keha-Mo Abi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhonghua Yu
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Hongyuan 624400, PR China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
11
|
You FF, Zhang MY, He H, He WQ, Li YZ, Chen Q. Kobuviruses carried by Rattus norvegicus in Guangdong, China. BMC Microbiol 2020; 20:94. [PMID: 32295529 PMCID: PMC7161169 DOI: 10.1186/s12866-020-01767-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Murine kobuviruses (MuKV) are newly recognized picornaviruses first detected in murine rodents in the USA in 2011. Little information on MuKV epidemiology in murine rodents is available. Therefore, we conducted a survey of the prevalence and genomic characteristics of rat kobuvirus in Guangdong, China. Results Fecal samples from 223 rats (Rattus norvegicus) were collected from Guangdong and kobuviruses were detected in 12.6% (28) of samples. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions showed that rat kobuvirus obtained in this study were genetically closely related to those of rat/mouse kobuvirus reported in other geographical areas. Two near full-length rat kobuvirus genomes (MM33, GZ85) were acquired and phylogenetic analysis of these revealed that they shared very high nucleotide/amino acids identity with one another (95.4%/99.4%) and a sewage-derived sequence (86.9%/93.5% and 87.5%/93.7%, respectively). Comparison with original Aichivirus A strains, such human kobuvirus, revealed amino acid identity values of approximately 80%. Conclusion Our findings indicate that rat kobuvirus have distinctive genetic characteristics from other Aichivirus A viruses. Additionally, rat kobuvirus may spread via sewage.
Collapse
Affiliation(s)
- Fang-Fei You
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 North Road Guangzhou, Guangzhou, 510515, China
| | - Min-Yi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 North Road Guangzhou, Guangzhou, 510515, China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 North Road Guangzhou, Guangzhou, 510515, China
| | - Wen-Qiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 North Road Guangzhou, Guangzhou, 510515, China
| | - Yong-Zhi Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 North Road Guangzhou, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 North Road Guangzhou, Guangzhou, 510515, China.
| |
Collapse
|