1
|
Reis LAM, Pampolha ABO, do Nascimento BLS, Dias DD, Araújo PADS, da Silva FS, Silva LHDSE, Reis HCF, da Silva EVP, Nunes Neto JP. Genus Culex Linnaeus, 1758 (Diptera: Culicidae) as an Important Potential Arbovirus Vector in Brazil: An Integrative Review. Life (Basel) 2023; 13:2179. [PMID: 38004319 PMCID: PMC10672040 DOI: 10.3390/life13112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
The genus Culex has 817 species subdivided into 28 subgenera. It has a cosmopolitan distribution, being most abundant in countries with a tropical climate. Understanding the ecology and diversity of viruses circulating in the species of this genus is important for understanding their role as arbovirus vectors in Brazil. To conduct an integrative review to identify the importance of the Culex genus as arbovirus vectors in Brazil. A search was carried out for scientific papers in the PubMed, BVSalud, Patuá-IEC and International Catalogue of Arboviruses: including certain other viruses of vertebrates databases. 36 publications describing arbovirus detections in Culex mosquitoes collected in the field in Brazil were evaluated. A total of 42 arbovirus species were detected, as well as studies analyzing the vector competence of C. quinquefasciatus for the transmission of four different arboviruses. The study of the Culex genus and its role as a vector of arboviruses in Brazil is essential for understanding transmission cycles, with the main aim of reducing cases of human infection. Thus, entomovirological surveillance guides the implementation of actions to detect circulating arboviruses among vectors to anticipate measures aimed at preventing or reducing the risk of arbovirus outbreaks in the country.
Collapse
Affiliation(s)
- Lúcia Aline Moura Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Ana Beatriz Oliveira Pampolha
- Institute of Biological Sciences, Faculty of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Bruna Lais Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Daniel Damous Dias
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Pedro Arthur da Silva Araújo
- Graduate Program in Biology of Infectious and Parasitary Agents, Biological Sciences Institute, Federal University of Pará, Belém 66077-830, Brazil
| | - Fábio Silva da Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Lucas Henrique da Silva e Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Hanna Carolina Farias Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Eliana Vieira Pinto da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Joaquim Pinto Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| |
Collapse
|
2
|
Lopez-Apodaca LI, Zarza H, Zamudio-Moreno E, Nuñez-Avellaneda D, Baak-Baak CM, Reyes-Solis GDC, Oswaldo Margarito TC, Peláez-Ballestas I, Roiz D, Suzán G, Roche B, Machain-Williams CI. Molecular survey of Zika virus in the animal-human interface in traditional farming. Front Vet Sci 2022; 9:1057686. [PMID: 36504864 PMCID: PMC9732010 DOI: 10.3389/fvets.2022.1057686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Backyard animal husbandry is common in rural communities in developing countries and, given the conditions in which it occurs, it can increase the risk of disease transmission, such as arboviruses. To determine the presence of the Zika virus (ZIKV) and abundance of its arthropod vectors we evaluated the socioeconomic implications involved in its transmission in two highly vulnerable Mayan communities in the state of Yucatan that practice backyard farming. An analytical cross-sectional study was carried out throughout 2016 to understand socioeconomic variables and seasonal patterns in mosquito populations. We selected 20 households from each community. Social exclusion indicators were analyzed, human and domestic animals were sampled, and mosquitoes were collected and identified. Four out of eight indicators of social exclusion were higher than the reported national averages. We captured 5,825 mosquitoes from 16 species being Culex quinquefasciatus and Aedes aegypti the most abundant. The presence of chickens and human overcrowding in dwellings were the most significant factors (P = 0.026) associated with the presence of Ae. aegypti. Septic tanks (odds ratio = 6.64) and chickens (odds ratio = 27.41) in backyards were the main risk factors associated with the presence of immature states of Ae. aegypti in both communities. Molecular analysis to detect ZIKV was performed in blood samples from 416 humans, 1,068 backyard animals and 381 mosquito pools. Eighteen humans and 10 pig pools tested positive for ZIKV. Forty-three mosquito pools tested positive for flavivirus. Ten of the 43 pools of positive mosquitoes were sequenced, corresponding 3/10 to ZIKV and 1/10 to Dengue virus type 2. The findings obtained indicate the continuous circulation of Flavivirus (including ZIKV) in backyard environments in vulnerable communities, highlighting the importance of studying their transmission and maintenance in these systems, due that backyard animal husbandry is a common practice in these vulnerable communities with limited access to health services.
Collapse
Affiliation(s)
- Laura Ivone Lopez-Apodaca
- Laboratory of Arbovirology, Regional Research Center Dr. Hideyo Noguchi, Autonomous University of Yucatan, Mérida, Mexico
| | - Heliot Zarza
- Department of Environmental Sciences, Lerma Unit Metropolitan Autonomous University, Mexico City, Mexico
| | - Emily Zamudio-Moreno
- Laboratory of Arbovirology, Regional Research Center Dr. Hideyo Noguchi, Autonomous University of Yucatan, Mérida, Mexico
| | - Daniel Nuñez-Avellaneda
- Direction Adjunt of Technological Development, Liaison and Innovation-National Science and Technology Council, Mexico City, Mexico
| | - Carlos Marcial Baak-Baak
- Laboratory of Arbovirology, Regional Research Center Dr. Hideyo Noguchi, Autonomous University of Yucatan, Mérida, Mexico
| | | | - Torres-Chablé Oswaldo Margarito
- Laboratory of Tropical and Vector-Borne Diseases DACA-UJAT, Academic Division of Agricultural Sciences, Juarez Autonomous University of Tabasco, Villahermosa, Mexico
| | | | - David Roiz
- Infectious Diseases: Vector, Control, Genetic, Ecology and Evolution (MIVEGEC), Univ. Montpellier, IRD, CNRS, Montpellier, France,International Laboratory Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico (ELDORADO), Mérida, Mexico
| | - Gerardo Suzán
- International Laboratory Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico (ELDORADO), Mérida, Mexico,Laboratory of Disease Ecology and One Health, Department of Ethology and Wildlife, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Benjamin Roche
- Infectious Diseases: Vector, Control, Genetic, Ecology and Evolution (MIVEGEC), Univ. Montpellier, IRD, CNRS, Montpellier, France,International Laboratory Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico (ELDORADO), Mérida, Mexico
| | - Carlos Ignacio Machain-Williams
- Laboratory of Arbovirology, Regional Research Center Dr. Hideyo Noguchi, Autonomous University of Yucatan, Mérida, Mexico,*Correspondence: Carlos Ignacio Machain-Williams
| |
Collapse
|
3
|
de Melo Lara L, Pereira-Filho AA, Mateus Pereira RH, Ferreira Malta LG, D'Ávila Pessoa GC, Koerich LB, Pereira MH, Araujo RN, de Figueiredo Gontijo N, Viana Sant'Anna MR. Adaptations to haematophagy: Investigations on how male and female Culex quinquefasciatus (Diptera: Culicidae) deal with human complement activation after a blood meal. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103650. [PMID: 34571142 DOI: 10.1016/j.ibmb.2021.103650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Culex quinquefasciatus is a mosquito species with an anthropophilic habit, often associated with areas with poor sanitation in tropical and urban regions. Adult males and females feed on sugars but only females feed on blood in natural conditions for egg maturation. During haematophagy, female C. quinquefasciatus transmit pathogens such as the West Nile virus, Oropouche virus, various encephalitis viruses, and Wuchereria bancrofti to human hosts. It has been observed in laboratory conditions that male C. quinquefasciatus may feed on blood during an artificial feed. Experiments were carried out to understand how males and females of this species deal with human complement activation. Our results showed that female C. quinquefasciatus, but not males, withstand the stress caused by the ingestion of normal human serum. It was observed that the salivary gland extracts from female mosquitoes were able to inhibit the classical and lectin pathways, whereas male salivary gland extracts only inhibited the lectin pathway. The male and female intestinal contents inhibited the classical and lectin pathways. Neither the salivary glands nor the intestinal contents from males and females showed inhibitory activity towards the alternative pathway. However, the guts of male and female C. quinquefasciatus captured factor H from the human serum, permitting C3b inactivation to its inactive form iC3b, and preventing the formation of the C3 convertase. The activity of the antioxidant enzyme catalase is similar in C. quinquefasciatus females and males. This article shows for the first time that males from a haematophagous arthropod species present human anti-complement activity in their salivary gland extracts and gut contents. The finding of an activity that helps to protect the damage caused by blood ingestion in sugar-feeding male mosquitoes suggests that this may be a pre-adaptation to blood-feeding.
Collapse
Affiliation(s)
- Luisa de Melo Lara
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Adalberto Alves Pereira-Filho
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Henrique Mateus Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luccas Gabriel Ferreira Malta
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Nascimento Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nelder de Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Silva SJRD, Magalhães JJFD, Mendes RPG, Pena LJ. Has Zika Virus Established a Sylvatic Cycle in South America? Acta Trop 2020; 209:105525. [PMID: 32447030 DOI: 10.1016/j.actatropica.2020.105525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Avenida Professor Moraes Rego 50670-420, Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Avenida Professor Moraes Rego 50670-420, Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Avenida Professor Moraes Rego 50670-420, Recife, Pernambuco, Brazil
| | - Lindomar José Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Avenida Professor Moraes Rego 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|