1
|
Ran L, Lei J, Liu H, Wang D, Liu J, Yang F, Chen D. Bacillus pumilus SMU5927 protect mice from damage caused by Salmonella Enteritidis colonization. Life Sci 2024; 361:123291. [PMID: 39631534 DOI: 10.1016/j.lfs.2024.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Salmonella Enteritidis is one of the main pathogens of foodborne diseases and an important pathogen causing diarrhea in yaks. Antibiotics are the mainstay of treatment for salmonellosis, but the widespread use of antibiotics has increased Salmonella resistance. Probiotics have been shown to antagonize Salmonella and reduce Salmonella infection. Bacillus pumilus is one of the microbial feed additives approved by the Chinese Ministry of Agriculture for use in animal breeding, which has the effect of improving animal growth performance and immunity, among others. Therefore, this paper explored the anti-infective effect of Bacillus pumilus against Salmonella. RESULTS Bacillus pumilus SMU5927 significantly enhances the intestinal mechanical barrier and reduces the number of Salmonella transferred to the organs. Bacillus pumilus SMU5927 ameliorated intestinal tissue damage and attenuated intestinal inflammatory responses in mice. In addition, Bacillus pumilus increased the ratio of the Firmicutes/Bacteroidetes in the intestinal flora, increased the abundance of beneficial bacteria such as Lactobacillus, and decreased the abundance of harmful bacteria. CONCLUSION This study confirmed the role of Bacillus pumilus SMU5927 in preventing and attenuating Salmonella damage and provided ideas for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Longjun Ran
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jiangying Lei
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Danni Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
2
|
Wang H, Wang M, Feng X, Li Y, Zhang D, Cheng Y, Liu J, Wang X, Zhang L, La H, You X, Ma Z, Zhou J. Genetic features of bovine viral diarrhea virus subgenotype 1c in newborn calves at nucleotide and synonymous codon usages. Front Vet Sci 2022; 9:984962. [PMID: 36118339 PMCID: PMC9470862 DOI: 10.3389/fvets.2022.984962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV), serving as an important pathogen for newborn calves, poses threat to reproductive and economic losses in the cattle industry. To survey the infection rate and genetic diversity of BVDV in newborn calves in northern China, a total of 676 sera samples of newborn calves were collected from four provinces between 2021 and 2022. All sera samples were individually detected for BVDV infection by RT-PCR and ELISA. Our results showed that the overall serological rate was 9.76% (66/676) and the average positive rate of BVDV RNA was 8.14% (55/676) in the newborn calves. Eight BVDV strains were successfully isolated from RT-PCR positive sera samples, and four isolates displayed the cytopathic effect (CPE). Based on phylogenetic tree at the genome level, the eight strains were classified into subgenotype 1c. Moreover, the BVDV isolates had a close genetic relationship with the GSTZ strain at either nucleotide or codon usage level. Interestingly, in comparison of synonymous codon usage patterns between the BVDV isolates with CPE and ones without CPE, there were four synonymous codons (UCG, CCC, GCA, and AAC) which displayed the significant differences (p < 0.05) at codon usage pattern, suggesting that synonymous codon usage bias might play a role in BVDV-1c biotypes. In addition, the usage of synonymous codons containing CpG dinucleotides was suppressed by the BVDV-1c isolates, reflecting one of strategies of immune evasion of BVDV to its host. Taken together, our study provided data for monitoring and vaccination strategies of BVDV for newborn calves in northern China.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Mengzhu Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yicong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Derong Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yan Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Junlin Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiezhong Wang
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Licheng Zhang
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Hua La
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Xiaoqian You
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jianhua Zhou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- *Correspondence: Jianhua Zhou
| |
Collapse
|
3
|
Wang X, Sun J, Zheng Y, Xie F. Dispersion of synonymous codon usage patterns in hepatitis E virus genomes derived from various hosts. J Basic Microbiol 2022; 62:975-983. [PMID: 35778820 DOI: 10.1002/jobm.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/01/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022]
Abstract
Hepatitis E virus (HEV) is an important zoonotic pathogen infecting a wide range of host species. It has a positive-sense, single-stranded RNA genome encoding three open reading frames (ORFs). Synonymous codon usages of viruses essentially determine their survival and adaptation to susceptible hosts. To better understand the interplay between the ever-expanding host range and synonymous codon usages of HEV, we quantified the dispersion of synonymous codon usages of HEV genomes isolated from different hosts via Vs calculation and information entropy. HEV ORFs show species-specific synonymous codon usage patterns. Ruminant-derived HEV ORFs own the most synonymous codons with stable usage patterns (Vs value <0.1) which leads to the stable overall codon usage patterns (R value being close to zero). Swine-derived HEV ORFs own more concentrated synonymous codons than those from wild boar. Compared with HEV strains isolated from other hosts, the human-derived HEV exhibits a distinct pattern at the overall codon usage (R < 0). Generally, ORF1 contains more synonymous codons with stable usage patterns (Vs < 0.1) than those of ORFs 2 and 3. Moreover, ORF3 contains more synonymous codons with varied patterns (Vs > 1.0) than ORFs 1 and 2. The host factor serving as one of the evolutionary dynamics probably influences synonymous codon usage patterns of the HEV genome. Taken together, synonymous codons with stable usage patterns in ORF1 might help to sustain the infection, while that with varied usage patterns in ORF3 may facilitate cross-species infection and expand the host range.
Collapse
Affiliation(s)
- Xin Wang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Sun
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yueyan Zheng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Fuqiang Xie
- Department of Stomatology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Li L, Wu J, Cao X, He J, Liu X, Shang Y. Analysis and Sequence Alignment of Peste des Petits Ruminants Virus ChinaSX2020. Vet Sci 2021; 8:vetsci8110285. [PMID: 34822658 PMCID: PMC8623451 DOI: 10.3390/vetsci8110285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
The peste des petits ruminants virus (PPRV) mainly infects goats and sheep and causes a highly contagious disease, PPR. Recently, a PPRV strain named ChinaSX2020 was isolated and confirmed following an indirect immunofluorescence assay and PCR using PPRV-specific antibody and primers, respectively. A sequencing of the ChinaSX2020 strain showed a genome length of 15,954 nucleotides. A phylogenetic tree analysis showed that the ChinaSX2020 genome was classified into lineage IV of the PRRV genotypes. The genome of the ChinaSX2020 strain was found to be closely related to PPRVs isolated in China between 2013 and 2014. These findings revealed that not a variety of PRRVs but similar PPRVs were continuously spreading and causing sporadic outbreaks in China.
Collapse
|
5
|
Mazumder GA, Uddin A, Chakraborty S. Analysis of codon usage bias in mitochondrial CO gene among platyhelminthes. Mol Biochem Parasitol 2021; 245:111410. [PMID: 34487743 DOI: 10.1016/j.molbiopara.2021.111410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
The phenomenon of non-uniform usage of the synonymous codons, where some codons are given more preference to others, is known as codon usage bias (CUB). CUB is known to be determined by two major evolutionary forces i.e. mutation pressure and selection. We used various approaches to understand the codon usage pattern in mitochondrial CO (MT-CO) genes involved in complex IV of the respiratory chain (RC) as no work was reported yet. Our present study revealed that CUB was relatively high and the coding sequences were rich in A and T. Correspondence analysis further indicated that A/T compositional properties under mutational pressure might be affecting the codon usage pattern and was different in different classes for MT-CO gene. A highly significant correlation between A% and A3%, T% and T3%, G% and G3%, C% and C3%, GC% and GC3% in all the classes indicated that compositional constraints under mutational pressure and natural selection might affect the CUB. Neutrality plot indicated that both natural selection and mutational bias affected the CUB, where, natural selection played the major role as compared to mutational pressure.
Collapse
Affiliation(s)
- Gulshana A Mazumder
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
6
|
Zhou JH, Li H, Li X, Gao J, Xu L, Han S, Liu Y, Shang Y, Cao X. Tracing Brucella evolutionary dynamics in expanding host ranges through nucleotide, codon and amino acid usages in genomes. J Biomol Struct Dyn 2020; 39:3986-3995. [PMID: 32448095 DOI: 10.1080/07391102.2020.1773313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The host range of Brucella organisms has expanded from terrestrial and marine mammals to fish and amphibians. The high homology genomes of different Brucella organisms promote us to investigate evolutionary patterns for nucleotide, codon and amino acid usage patterns at gene levels among Brucella species. Although the similar patterns for nucleotide and synonymous codon usages exist in gene population, GC composition at the first codon position has significant correlations to that of the second and third codon positions, respectively, suggesting that nucleotide usages surrounding one codon influence synonymous codon usage patterns. Evolutionary patterns represented by synonymous codon and amino acid usages reflect host factor impacting Brucella speciation. As for genetic variations of important virulent factors involved with different biological functions, genes encoding lipoplysaccharides (LPSs) display more distinctive codon adaptation to Brucella than those of the BvrR/BvrS system and type IV secretion system. By Bayesian analysis, the polygenetic constructions for these genes of virulent factors shared by Brucella species display the purifying/positive selections and partially host factor in mediating genetic variations of these genes. The systemic analyses for nucleotide, synonymous codon and amino acid usages at gene level and genetic variations of important virulent factor genes display that host limitation influences either genetic characterizations at gene level or a particular gene involved in virulent factors of Brucella.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Hua Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,China Agricultural Vet Biology and Technology limited liability company, Lanzhou, Gansu, P.R. China
| | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Jing Gao
- Gansu Center for Animal Disease Prevention and Control, Lanzhou, Gansu, P.R. China
| | - Long- Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P.R. China
| | - Shengyi Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P.R. China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| |
Collapse
|