1
|
Rezaei S, Tajbakhsh S, Naeimi B, Yousefi F. Investigation of gyrA and parC mutations and the prevalence of plasmid-mediated quinolone resistance genes in Klebsiella pneumoniae clinical isolates. BMC Microbiol 2024; 24:265. [PMID: 39026143 PMCID: PMC11256406 DOI: 10.1186/s12866-024-03383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83→ Ile and Asp87→Gly, and double substitutions, Ser83→Phe plus Asp87→Ala, Ser83→Tyr plus Asp87→Ala, Ser83→Ile plus Asp87→Tyr, Ser83→Phe plus Asp87→Asn and Ser83→Ile plus Asp87→Gly were detected. In addition, Ser80→Ile and Glu84→Lys single substitution were found in parC gene. CONCLUSIONS Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.
Collapse
Affiliation(s)
- Sepideh Rezaei
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Tajbakhsh
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behrouz Naeimi
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Forough Yousefi
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
2
|
Krul D, Rodrigues LS, Siqueira AC, Mesa D, Dos Santos ÉM, Vasconcelos TM, Spalanzani RN, Cardoso R, Ricieri MC, de Araújo Motta F, Conte D, Dalla-Costa LM. High-risk clones of carbapenem resistant Klebsiella pneumoniae recovered from pediatric patients in Southern Brazil. Braz J Microbiol 2024; 55:1437-1443. [PMID: 38499916 PMCID: PMC11153399 DOI: 10.1007/s42770-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) exhibit high mortality rates in pediatric patients and usually belong to international high-risk clones. This study aimed to investigate the molecular epidemiology and carbapenem resistance mechanisms of K. pneumoniae isolates recovered from pediatric patients, and correlate them with phenotypical data. Twenty-five CRKP isolates were identified, and antimicrobial susceptibility was assessed using broth microdilution. Carbapenemase production and β-lactamase genes were detected by phenotypic and genotypic tests. Multilocus sequence typing was performed to differentiate the strains and whole-genome sequencing was assessed to characterize a new sequence type. Admission to the intensive care unit and the use of catheters were significantly positive correlates of CRKP infection, and the mortality rate was 36%. Almost all isolates showed multidrug-resistant phenotype, and most frequent resistant gene was blaKPC. We observed the dissemination of ST307 and clones belonging to CG258, which are considered high risk. In pediatric patients, these clones present with high genomic plasticity, favoring adaptation of the KPC and NDM enzymes to healthcare environments.
Collapse
Affiliation(s)
- Damaris Krul
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Luiza Souza Rodrigues
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Adriele Celine Siqueira
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Dany Mesa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Érika Medeiros Dos Santos
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
- Hospital Pequeno Príncipe (HPP), Curitiba, Paraná, Brazil
| | - Thaís Muniz Vasconcelos
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Regiane Nogueira Spalanzani
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | | | | | | | - Danieli Conte
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil.
| |
Collapse
|
3
|
Karukappadath RM, Sirbu D, Zaky A. Drug-resistant bacteria in the critically ill: patterns and mechanisms of resistance and potential remedies. FRONTIERS IN ANTIBIOTICS 2023; 2:1145190. [PMID: 39816646 PMCID: PMC11732010 DOI: 10.3389/frabi.2023.1145190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/06/2023] [Indexed: 01/18/2025]
Abstract
Antimicrobial resistance in the intensive care unit is an ongoing global healthcare concern associated with high mortality and morbidity rates and high healthcare costs. Select groups of bacterial pathogens express different mechanisms of antimicrobial resistance. Clinicians face challenges in managing patients with multidrug-resistant bacteria in the form of a limited pool of available antibiotics, slow and potentially inaccurate conventional diagnostic microbial modalities, mimicry of non-infective conditions with infective syndromes, and the confounding of the clinical picture of organ dysfunction associated with sepsis with postoperative surgical complications such as hemorrhage and fluid shifts. Potential remedies for antimicrobial resistance include specific surveillance, adequate and systematic antibiotic stewardship, use of pharmacokinetic and pharmacodynamic techniques of therapy, and antimicrobial monitoring and adequate employment of infection control policies. Novel techniques of combating antimicrobial resistance include the use of aerosolized antibiotics for lung infections, the restoration of gut microflora using fecal transplantation, and orally administered probiotics. Newer antibiotics are urgently needed as part of the armamentarium against multidrug-resistant bacteria. In this review we discuss mechanisms and patterns of microbial resistance in a select group of drug-resistant bacteria, and preventive and remedial measures for combating antibiotic resistance in the critically ill.
Collapse
Affiliation(s)
- Riaz M. Karukappadath
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dumitru Sirbu
- Department of Pharmacology, Ascension St. Vincent’s, Birmingham, AL, United States
| | - Ahmed Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Molecular patterns of clinically important fluoroquinolone resistance in multidrug-resistant Klebsiella pneumoniae isolates during nosocomial outbreaks in Shanghai, PR China. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction. The soaring resistance of
Klebsiella pneumoniae
to fluoroquinolones in PR China has substantially limited the application of these antimicrobials, especially in those clinical settings that were threatened by persistent carbapenem-resistant
K. pneumoniae
(CRKP), necessitating strict implementation of antimicrobial stewardship and active enhanced surveillance of infection control.
Hypothesis. There is interplay between plasmid-mediated quinolone resistance (PMQR) determinants and quinolone resistance-determining region (QRDR) mutations during the acquisition of a clinically important fluoroquinolone resistance (CI-FR) profile in multidrug-resistant
K. pneumoniae
(MDR-KP) isolates.
Aim. To investigate the high-risk CRKP clones responsible for nosocomial spread and analyse the molecular patterns of CI-FR in MDR-KP isolates in a tertiary hospital in Shanghai, PR China.
Methodology. A total of 34 isolates, including 30 CRKPs, were molecularly characterized. Investigations included antimicrobial susceptibility tests, multilocus sequence typing (MLST) and wzi genotyping, PCR sequencing and phylogenetic analysis for resistance-associated genes, and clinical information retrieval from medical records.
Results. Two high-risk CRKP clones, ST11-wzi64 and ST15-wzi19/wzi24, were identified as being responsible for nosocomial outbreaks in the intensive care unit (ICU) and the neurosurgery department, potentially by the respiratory route. QRDR mutations of both gyrA and parC were detected in isolates of ST15 (S83F/D87A/S80I), ST11 (S83I/D87G/S80I) and ST218 (D87A/S80I), respectively. The PMQR genes, qnrS1, aac(6′)-Ib-cr and oqxAB, were present in 32 (94.1 %) of the isolates alone or in combination, co-occurring with genes (bla) encoding β-lactamases, 16S rRNA methylases and putrescine ABC permeases. AcrR, an AcrAB transcriptional repressor, was insertion-inactivated by the IS5-like element in ST11 isolates. The encoding sequences of OmpK35 and OmpK36 genes were associated with specific STs and wzi alleles. ST11, ST15-wzi19 and ST218 isolates had frameshift disruptions in OmpK35 and specific GD insertions at position 134–135 in OmpK36. The 27 isolates with clinically important ciprofloxacin resistance (MICs ≥2 mg l−1) included 25 isolates (ST15, ST11, ST218) with multiple QRDR mutations, plus 1 with only 2 PMQR determinants (ST290-wzi21) and another with an unknown resistance mechanism (ST65-wzi72). Ciprofloxacin-susceptible isolates maintained intact ompK36 genes, including two CRKPs each with ST13-wzi74 (KPC-2 and NDM-1 coproducers) and ST65-wzi72, plus carbapenem-susceptible isolates (ST15-wzi24, ST65-wzi72, ST107-wzi173).
Conclusions. Under selective pressures, the accumulation of mutations of three types (QRDR, acrR, ompK36) and the acquisition of resistance-conferring genes have continuously contributed to CI-FR in MDR-KP isolates.
Collapse
|
5
|
Lee MC, Chang H, Sun FJ, Wu AYJ, Lu CH, Lee CM. Association between Antimicrobial Consumption and the Prevalence of Nosocomial Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae in a Tertiary Hospital in Northern Taiwan. Am J Trop Med Hyg 2022; 107:467-473. [PMID: 35895586 PMCID: PMC9393431 DOI: 10.4269/ajtmh.21-1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 08/03/2023] Open
Abstract
Carbapenem-resistant Enterobacteriales has become a threat in Taiwan. This is the first local study focusing on the association between carbapenem-resistant Enterobacteriales and antimicrobial consumption. From January 2012 to December 2020, data were collected in a tertiary care hospital in Taipei, Taiwan. Antimicrobial consumption was estimated by the defined daily dose/1,000 patient-days. During the same period, the prevalence of carbapenem-resistant Escherichia coli (CREC) and carbapenem-resistant Klebsiella pneumoniae (CRKP) were collected through routine surveillance data. The following retrospective analyses were conducted: 1) analysis of antimicrobial consumption over time, (2) analysis and forecast of CREC and CRKP prevalence over time, and 3) analysis of correlation between antimicrobial consumption and the prevalence of CREC and CRKP. The consumption of piperacillin/tazobactam (β = 0.615), fluoroquinolones (β = 0.856), meropenem (β = 0.819), and doripenem (β = 0.891) increased during the observation period (P < 0.001), and the consumption of aminoglycosides (β = -0.852) and imipenem/cilastatin (β = -0.851) decreased (P < 0.001). The prevalence of CRKP rose over time (β = 0.522, P = 0.001) and correlated positively with the consumption of fluoroquinolones, levofloxacin, penicillin/β-lactamase inhibitor, piperacillin/tazobactam, meropenem, and doripenem (P < 0.05). The prevalence of CRKP and CREC both correlated negatively with consumption of aminoglycosides (P < 0.01). The prevalence of CRKP in our hospital increased as the forecast predicted based on an autoregressive integrated moving average model. This study provides alarming messages for members participating in antimicrobial stewardship programs, including the increasing prevalence of CRKP, the increasing consumption of broad-spectrum antibiotics, and the positive correlation between them.
Collapse
Affiliation(s)
- Mei-Chun Lee
- Department of Pharmacy, MacKay Memorial Hospital, Taipei, Taiwan
- Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan
| | - Hsun Chang
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Ju Sun
- Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Hung Lu
- Department of Pharmacy, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chun-Ming Lee
- Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Medical College, New Taipei City, Taiwan
- Department of Internal Medicine, St. Joseph’s Hospital, Yunlin County, Taiwan
| |
Collapse
|
6
|
Onishi R, Shigemura K, Osawa K, Yang YM, Maeda K, Tanimoto H, Kado M, Fang SB, Sung SY, Miyara T, Fujisawa M. Impact on quinolone resistance of plasmid-mediated quinolone resistance gene and mutations in quinolone resistance-determining regions in extended spectrum beta lactamase-producing Klebsiella pneumoniae isolated from urinary tract infection patients. Pathog Dis 2022; 80:6649813. [PMID: 35878410 DOI: 10.1093/femspd/ftac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Klebsiella pneumoniae is a typical pathogen in urinary tract infections (UTI), and the emergence of extended spectrum beta-lactamase (ESBL)-producing strains has been frequently reported, accompanied by higher quinolone resistance rates. There are two major mechanisms of quinolone resistance, mutations in quinolone resistance-determining regions (QRDR) and the presence of the plasmid-mediated quinolone resistance (PMQR) genes. This study aimed to investigate quinolone resistance among 105 ESBL-producing K. pneumoniae specimens isolated from UTI patients in Indonesia. These were characterized for antimicrobial resistance to nalidixic acid, ciprofloxacin and levofloxacin, QRDR mutations in gyrA and parC and the presence of PMQR genes. We found that 84.8% of the collected isolates were resistant to at least one of the quinolones. QRDR mutation in gyrA was observed in 49.5% of these strains and parC mutations in 61.0%. PMQR genes were identified in 84.8% of strains. The QRDR mutations clearly had a greater effect on resistance than the PMQR genes. In conclusion, we found high quinolone resistance rates in Indonesian ESBL-producing K. pneumoniae, in which QRDR mutation played a major role.
Collapse
Affiliation(s)
- Reo Onishi
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan.,Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Young-Min Yang
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Koki Maeda
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroshi Tanimoto
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Mitsuki Kado
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Shiuh-Bin Fang
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, 291 Jhong Jheng Road, Jhong Ho District, New Taipei City, 23561, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, 250, Wu Hsing Street, Hsin Yi District, Taipei, 11031, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Takayuki Miyara
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
7
|
Talebzadeh H, Mellali H, Solgi H. Association of fluoroquinolone resistance and ESBL production in hypervirulent Klebsiella pneumoniae ST11 and ST893 in Iran. Acta Microbiol Immunol Hung 2022. [PMID: 35195537 DOI: 10.1556/030.2022.01638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
Abstract
The spread of multidrug resistance in Klebsiella pneumoniae is a serious threat to the public health. In this study, the prevalence of fluoroquinolone resistance and virulence determinants among ESBL-producing K. pneumoniae isolates was investigated. A total of 50 third-generation cephalosporin resistant K. pneumoniae strains were collected from patients' clinical cultures between September 1st, 2019 and February 30th, 2020. Clonal relatedness of clinical isolates was determined by multilocus sequence typing. All 50 isolates were multidrug-resistant (MDR) and carried at least one of the ESBL resistance determinants. The bla CTX-M-15 gene was the major ESBL determinant found in K. pneumoniae (88%), followed by bla SHV (86%) and bla TEM (78%). PMQR was detected in 96% of the isolates and aac(6')-Ib-cr was the most common (78%) as well as multiple mutations in gyrA (S83I, D87G) and parC (S80I) were found. Selected isolates were assigned to seven sequence types (STs) (ST11, ST893, ST147, ST16, ST377, ST13, and ST392). Overall, hypervirulent phenotypes were identified in 26 (52%) of the isolates. Among the 50 isolates, 28 (56%) were positive for ybt, 23 (46%) for rmpA, 17 (34%) for iroB, 15 (30%) for magA, 4 (8%) for alls and 3 (6%) for iucA genes. The K1 capsular type was the most prevalent (11/50; 22%) among isolates. The emergence of hypervirulent K. pneumoniae (hvKp) ST11 and ST893, which co-carried ESBL, PMQR determinants and different virulence genes has become a threat to the treatment of inpatients in the clinical setting.
Collapse
Affiliation(s)
- Hamid Talebzadeh
- 1 Department of Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mellali
- 1 Department of Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Solgi
- 2 Division of Clinical Microbiology, Department of Laboratory Medicine, Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- 3 Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Mohd Asri NA, Ahmad S, Mohamud R, Mohd Hanafi N, Mohd Zaidi NF, Irekeola AA, Shueb RH, Yee LC, Mohd Noor N, Mustafa FH, Yean CY, Yusof NY. Global Prevalence of Nosocomial Multidrug-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2021; 10:1508. [PMID: 34943720 PMCID: PMC8698758 DOI: 10.3390/antibiotics10121508] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of nosocomial multidrug-resistant Klebsiella pneumoniae is an escalating public health threat worldwide. The prevalence of nosocomial infections due to K. pneumoniae was recorded up to 10%. In this systematic review and meta-analysis, which were conducted according to the guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis, 1092 articles were screened from four databases of which 47 studies fulfilled the selected criteria. By performing a random-effect model, the pooled prevalence of nosocomial multidrug-resistant K. pneumoniae was estimated at 32.8% (95% CI, 23.6-43.6), with high heterogeneity (I2 98.29%, p-value < 0.001). The estimated prevalence of this pathogen and a few related studies were discussed, raising awareness of the spread of multidrug-resistant K. pneumoniae in the healthcare setting. The emergence of nosocomial multidrug-resistant K. pneumoniae is expected to increase globally in the future, and the best treatments for treating and preventing this pathogen should be acknowledged by healthcare staff.
Collapse
Affiliation(s)
- Nur Ain Mohd Asri
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
- Department of Plant Sciences, Kuliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (S.A.); (R.M.)
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (S.A.); (R.M.)
| | - Nurmardhiah Mohd Hanafi
- Department of Plant Sciences, Kuliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Nur Fatihah Mohd Zaidi
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (A.A.I.); (R.H.S.)
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (A.A.I.); (R.H.S.)
| | - Leow Chiuan Yee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Glugor 11800, Malaysia;
| | - Norhayati Mohd Noor
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Fatin Hamimi Mustafa
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
| | - Chan Yean Yean
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (A.A.I.); (R.H.S.)
| | - Nik Yusnoraini Yusof
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
| |
Collapse
|
9
|
Distribution of fluoroquinolone resistance determinants in Carbapenem-resistant Klebsiella pneumoniae clinical isolates associated with bloodstream infections in China. BMC Microbiol 2021; 21:164. [PMID: 34078263 PMCID: PMC8173869 DOI: 10.1186/s12866-021-02238-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The rate of fluoroquinolone (FQ) resistance among carbapenem-resistant Klebsiella pneumoniae (CRKP) is high. The present study aimed to investigate the distribution of fluoroquinolone resistance determinants in clinical CRKP isolates associated with bloodstream infections (BSIs). RESULTS A total of 149 BSI-associated clinical CRKP isolates collected from 11 Chinese teaching hospitals from 2015 to 2018 were investigated for the prevalence of fluoroquinolone resistance determinants, including plasmid-mediated quinolone resistance (PMQR) genes and spontaneous mutations in the quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes. Among these 149 clinical CRKP isolates, 117 (78.5%) exhibited resistance to ciprofloxacin. The GyrA substitutions (Ser83 → IIe/Phe) and (Asp87 → Gly/Ala) were found among 112 (75.2%) of 149 isolates, while the substitution (Ser80 → IIe) of ParC was found in 111 (74.5%) of the 149 isolates. In total, 70.5% (105/149) of the CRKP isolates had at least two mutations within gyrA as well as a third mutation in parC. No mutations in the QRDRs were found in 31 ciprofloxacin susceptible CRKP isolates. Eighty-nine (56.9%) of 149 were found to carry PMQR genes including qnrS1 (43.0%), aac(6')-Ib-cr (16.1%), qnrB4 (6.0%), qnrB2 (2.7%), and qnrB1 (1.3%). Nine isolates contained two or more PMQR genes, with one carrying four [aac(6')-Ib-cr, qnr-S1, qnrB2, and qnrB4]. The co-existence rate of PMQR determinants and mutations in the QRDRs of gyrA and parC reached 68.5% (61/89). Seventy-four (83.1%, 74/89) PMQR-positive isolates harbored extended-spectrum beta-lactamase (ESBL)-encoding genes. Multilocus sequence typing (MLST) analysis demonstrated that the ST11 was the most prevalent STs in our study. CONCLUSIONS Mutations in the QRDRs of gyrA and parC were the key factors leading to the high prevalence of fluoroquinolone resistance among BSI-associated CRKP. The co-existence of PMQR genes and mutations in the QRDRs can increase the resistance level of CRKP to fluoroquinolones in clinical settings. ST11 CRKP isolates with identical QRDR substitution patterns were found throughout hospitals in China.
Collapse
|
10
|
Zeng L, Yang C, Zhang J, Hu K, Zou J, Li J, Wang J, Huang W, Yin L, Zhang X. An Outbreak of Carbapenem-Resistant Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Chongqing, China. Front Cell Infect Microbiol 2021; 11:656070. [PMID: 34150672 PMCID: PMC8208809 DOI: 10.3389/fcimb.2021.656070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Due to the critical condition and poor immunity of patients, the intensive care unit (ICU) has always been the main hospital source of multidrug-resistant bacteria. In recent years, with the large-scale use of antibiotics, the detection rate and mortality of carbapenem-resistant Klebsiella pneumoniae (CRKP) have gradually increased. This study explores the molecular characteristics and prevalence of CRKP isolated from the ICU ward of a tertiary hospital in China. Methods A total of 51 non-duplicated CRKP samples isolated from the ICU were collected from July 2018-July 2020. The enzyme production of the strains was preliminarily screened by carbapenemase phenotypic test, and drug-resistant and virulence genes were detected by PCR. The transferability of plasmid was verified by conjugation test. The minimal inhibitory concentration (MIC) was determined by microbroth dilution method and genetic diversity was detected by multilocus sequence typing and pulsed-field gel electrophoresis. Results blaKPC-2 was the only carbapenemase detected. The major virulence genes were uge (100%), mrkD (94.1%), kpn (94.1%), and fim-H (72.5%), while wcag, ironB, alls and magA genes were not detected. One sequence type ST1373 strain, hypervirulent K. pneumoniae (hvKP), was detected. CRKP strains were highly resistant to quinolones, cephalosporins, aminoglycosides, and polymyxin, but susceptive to tigecycline and ceftazidime-avibactam. The success rate of conjugation was 12.2%, indicating the horizontal transfer of blaKPC-2 . Homology analysis showed that there was a clonal transmission of ST11 CRKP in the ICU of our hospital. Conclusion The present study showed the outbreak and dissemination in ICU were caused by ST11 CRKP, which were KPC-2 producers, and simultaneously, also carried some virulence genes. ST11 CRKP persisted in the ward for a long time and spread among different areas. Due to the widespread dispersal of the transferable blaKPC-2 plasmid, the hospital should promptly adopt effective surveillance and strict infection control strategies to prevent the further spread of CRKP. Ceftazidime-avibactam showed high effectiveness against CRKP and could be used for the treatment of ICU infections.
Collapse
Affiliation(s)
- Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jingbo Zou
- Department of Microbiology, Yongchuan District Center for Disease Control and Prevention of Chongqing, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wan Huang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lining Yin
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
11
|
Ishii A, Shigemura K, Kitagawa K, Harada M, Kan Y, Hayashi F, Osawa K, Kuntaman K, Shirakawa T, Fujisawa M. Cross-Resistance and the Mechanisms of Cephalosporin-Resistant Bacteria in Urinary Tract Infections Isolated in Indonesia. Curr Microbiol 2021; 78:1771-1777. [PMID: 33713209 DOI: 10.1007/s00284-021-02415-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
Urinary tract infection (UTI) by antibiotic-resistant strains has become increasingly problematic, with trends that differ from country to country. This study examined cross-resistance and the mechanisms of cephalosporin resistance in UTI-causative bacteria isolated in Indonesia. Antibiotic susceptibility tests based on Clinical Laboratory Standards Institute (CLSI) standards were done for UTI-causative strains (n = 50) isolated from patients in Indonesia in 2015-2016 and showed resistance against the third-generation cephalosporin. Mechanistic studies were carried out to confirm the presence of extended-spectrum β-lactamase (ESBL) genes, carbapenemase-related genes, the fosA3 gene related to fosfomycin resistance, and mutations of quinolone-resistance-related genes. Isolated UTI-causative bacteria included Escherichia coli (64.0%), Pseudomonas aeruginosa (16.0%), Klebsiella pneumoniae (10.0%), and others (10.0%). These strains showed 96.0% susceptibility to amikacin, 76.0% to fosfomycin, 90.0% to imipenem, 28.0% to levofloxacin, 92.0% to meropenem, and 74.0% to tazobactam/piperacillin. ESBL was produced by 68.0% of these strains. Mechanistic studies found no strains with carbapenemase genes but 6.0% of strains had the fosA3 gene. Seventy-two % of the strains had mutations in the gyrA gene and 74.0% in the parC gene. Most E. coli strains (87.5%) had Ser-83 → Leu and Asp-87 → Asn in gyrA and 93.8% of E. coli had Ser-80 → Ile in parC. There were significant correlations among mutations in gyrA and parC, and fosA3 gene detection (P < 0.05), respectively. To our knowledge, this is the first mechanistic study of antibiotic-cross-resistant UTI-causative bacteria in Indonesia. Further studies with a longer period of observation are necessary, especially for changes in carbapenem resistance without carbapenemase-related genes.
Collapse
Affiliation(s)
- Aya Ishii
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan. .,Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan. .,Department of Infection Control, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Koichi Kitagawa
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Mizuki Harada
- Central Laboratory Department, Local Independent Administrative Agency, Rinkuu General Medical Center, Osaka, Japan
| | - Yuki Kan
- Department of Medical Technology, School of Medicine Faculty of Health Sciences, Kobe University, Kobe, Japan
| | - Fuka Hayashi
- Department of Medical Technology, School of Medicine Faculty of Health Sciences, Kobe University, Kobe, Japan
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan
| | - K Kuntaman
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Toshiro Shirakawa
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
Kareem SM, Al-Kadmy IMS, Kazaal SS, Mohammed Ali AN, Aziz SN, Makharita RR, Algammal AM, Al-Rejaie S, Behl T, Batiha GES, El-Mokhtar MA, Hetta HF. Detection of gyrA and parC Mutations and Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Klebsiella pneumoniae. Infect Drug Resist 2021; 14:555-563. [PMID: 33603418 PMCID: PMC7886241 DOI: 10.2147/idr.s275852] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Recently, the extensive use of quinolones led to increased resistance to these antimicrobial agents, with different rates according to the organism and the geographical region. The aim of this study was to detect the resistance rate of Klebsiella pneumoniae Iraqi isolates toward quinolone antimicrobial agents, to determine genetic mutations in gyrA and parC, to screen for efflux-pump activity, and to screen the presence of plasmid-mediated quinolone resistance (PMQR) genes. Methods Forty-three K. pneumoniae isolates were confirmed phenotypically and genotypically by Vitek 2 system and species specific primers by PCR using the targeting rpo gene followed by sequencing. Antibiotic susceptibility test was carried out using disc diffusion method. Quinolone resistant isolates were subjected to ciprofloxacin MIC testing, and cartwheel method to screen for efflux pump activity. The presence of the plasmid mediated quinolone resistance genes qepA, qnrB, qnrS, and aac(6)Ib was tested by PCR. Sequencing of gyrA and parC was performed. Results We observed a high rate of resistance to ceftriaxone, gentamicin ciprofloxacin, and levofloxacin. Low rate of resistance was detected against amikacin and azithromycin. Ciprofloxacin MIC results revealed that 96.1% of the isolates had MICs >256 µg/mL, 83.4% had MICs >512 µg/mL while 34.6% had MIC >1024 µg/mL. Testing of isolates against ciprofloxacin mixed with EtBr at various concentrations resulted in decreased resistant. Sequencing results showed that Ser83Leu was the most common mutation in gyrA that was observed in all quinolone resistant isolates, followed by Asp87Asn. Ser80Ile mutation in parC was observed in 77.7% of the tested isolates. The prevalence of PMQR genes was 92.5% aac (6)-Ib, 51.8% qnrB, 40.7% qepA, and 37% qnrS. Conclusion Quinolone resistance is common in K. pneumoniae isolates in Baghdad. The frequent mutation in gyrA and parC, and the presence of PMQR genes is alarming.
Collapse
Affiliation(s)
- Sawsan Mohammed Kareem
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq.,Faculty of Science & Engineering, School of Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Saba S Kazaal
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Alaa N Mohammed Ali
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Sarah Naji Aziz
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Rabab R Makharita
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Marini S, Oliva M, Slizovskiy IB, Noyes NR, Boucher C, Prosperi M. Exploring Prediction of Antimicrobial Resistance Based on Protein Solvent Accessibility Variation. Front Genet 2021; 12:564186. [PMID: 33552147 PMCID: PMC7862766 DOI: 10.3389/fgene.2021.564186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant and growing public health threat. Sequencing of bacterial isolates is becoming more common, and therefore automatic identification of resistant bacterial strains is of pivotal importance for efficient, wide-spread AMR detection. To support this approach, several AMR databases and gene identification algorithms have been recently developed. A key problem in AMR detection, however, is the need for computational approaches detecting potential novel AMR genes or variants, which are not included in the reference databases. Toward this direction, here we study the relation between AMR and relative solvent accessibility (RSA) of protein variants from an in silico perspective. We show how known AMR protein variants tend to correspond to exposed residues, while on the contrary their susceptible counterparts tend to be buried. Based on these findings, we develop RSA-AMR, a novel relative solvent accessibility-based AMR scoring system. This scoring system can be applied to any protein variant to estimate its propensity of altering the relative solvent accessibility, and potentially conferring (or hindering) AMR. We show how RSA-AMR score can be integrated with existing AMR detection algorithms to expand their range of applicability into detecting potential novel AMR variants, and provide a ten-fold increase in Specificity. The two main limitations of RSA-AMR score is that it is designed on single point changes, and a limited number of variants was available for model learning.
Collapse
Affiliation(s)
- Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Marco Oliva
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL, United States
| | - Ilya B Slizovskiy
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Noelle Robertson Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Christina Boucher
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL, United States
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|