1
|
Wang S, Liu G, Yang B, Zhang Z, Hu D, Wu C, Qin Y, Dou Q, Dai Q, Hu W. Low-fouling CNT-PEG-hydrogel coated quartz crystal microbalance sensor for saliva glucose detection. RSC Adv 2021; 11:22556-22564. [PMID: 35480473 PMCID: PMC9034414 DOI: 10.1039/d1ra02841c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Saliva glucose detection based on a quartz crystal microbalance (QCM) sensor has emerged as a promising tool and a non-invasive diagnostic technique for diabetes. However, the low glucose concentration and strong protein interference in the saliva hinder the QCM sensors from practical applications. In this study, we present a robust and simple anti-fouling CNT-PEG-hydrogel film-coated QCM sensor for the detection of saliva glucose with high sensitivity. The CNT-PEG-hydrogel film consists of two layers; the bottom base PBA-hydrogel film is designed to recognize the glucose while the top CNT-PEG layer is used to restrict protein adsorption and improve the biocompatibility. Our results show that this CNT-PEG-hydrogel film exhibited a 10-fold enhancement on the detection limit compared to the PBA-hydrogel. Meanwhile, the adsorption of proteins on the surface of the CNT-PEG-hydrogel film, including bovine serum albumin (BSA), mucin (MUC), and fibrinogen (FIB), were reduced by 99.1%, 77.8%, and 83.7%, respectively. The CNT-PEG-hydrogel film could detect the typical saliva glucose level (0-50 mg L-1) in 10% saliva with a good responsivity. To sum up, this new tool with low-fouling film featuring high stability, specificity, and selectivity holds great potential for non-invasive monitoring of saliva glucose in human physiological levels.
Collapse
Affiliation(s)
- Shiwen Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University Tianjin 300072 China
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Guanjiang Liu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Bei Yang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Zifeng Zhang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Debo Hu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Chenchen Wu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Yaling Qin
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Qian Dou
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Qing Dai
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University Tianjin 300072 China
| |
Collapse
|
2
|
Muñoz-Calderón A, Lucero RH, Brusés BL, Formichelli L, Koscinczuk P, Pedelhez M, Schijman AG. Detection and identification of Kinetoplastids of zoonotic interest by HRM-qPCR analysis in Canis lupus familiaris from Argentinean Mesopotamia. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 24:100557. [PMID: 34024373 DOI: 10.1016/j.vprsr.2021.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
This work aimed to conduct a first PCR-based approach for differential diagnosis of kinetoplastidean infections in dogs. Diagnosis of Kinetoplastid infections in domestic animals is difficult, since parasitemia is intermittent and signs are nonspecific; it is mainly based on parasitological smears or concentration techniques, which lack sensitivity and depend on operator` expertise. Dogs are relevant reservoirs in transmission of Kinetoplastids; they function as sentinels to detect active transmission cycles before they involve humans. Trypanosoma cruzi, Trypanosoma evansi, and various species of Leishmania genus are multi-host parasites, capable of parasitizing dogs among a vast number of reservoirs. An algorithm based on sequential Real-Time PCR-High Resolution Melting (HRM) (qPCR-HRM) assays directed at 24S alpha ribosomal DNA, ITS1 and Hsp70 designed to distinguish among T. cruzi, T. rangeli, T. evansi and Leishmania spp. was tested in fourteen dogs with suspicion of kinetoplastid diseases. A qPCR control of DNA integrity in the tested sample, targeted to the mammalian interphotoreceptor retinoid-binding protein (IRBP) gene fragment was incorporated to the algorithm. T. evansi was detected in four dogs and L. infantum in one. Two of five qPCR positive cases were smear negative. Smear and T. evansi qPCR positive cases corresponded to animals that died despite being treated, indicating the association of parasitemia with disease severity. This laboratory tool increases the possibility of confirming outbreaks of kinetoplastid diseases with zoonotic potential and identify the etiological agents involved.
Collapse
Affiliation(s)
- Arturo Muñoz-Calderón
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr Héctor Torres" (INGEBI), Buenos Aires, Argentina.
| | - Raul Horacio Lucero
- Area de Biología Molecular, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Argentina
| | - Bettina L Brusés
- Area de Biología Molecular, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Argentina
| | - Laura Formichelli
- Area de Biología Molecular, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Argentina
| | - Patricia Koscinczuk
- Patología Médica, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Resistencia, Argentina
| | - Mariana Pedelhez
- Area de Biología Molecular, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Argentina
| | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr Héctor Torres" (INGEBI), Buenos Aires, Argentina.
| |
Collapse
|